. 24/7 Space News .
ENERGY TECH
PPPL scientist confirms way to launch current in fusion plasmas
by Staff Writers
Plainsboro NJ (SPX) Nov 19, 2019

PPPL physicist Fatima Ebrahimi

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

Now, physicist Fatima Ebrahimi of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has used high-resolution computer simulations to investigate the practicality of this technique. The simulations show that CHI could produce the current continuously in larger, more powerful tokamaks than exist today to produce stable fusion plasmas.

"Stability is the most important aspect of any current-drive system in tokamaks," said Ebrahimi, author of a paper reporting the findings in Physics of Plasmas. "If the plasma is stable, you can have more current and more fusion, and have it all sustained over time."

Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

The CHI technique replaces an electromagnet called a solenoid that induces current in today's tokamaks. CHI produces the critical current by spontaneously generating magnetic bubbles, or plasmoids, into the plasma. The new high-resolution simulations confirm that a parade of plasmoids marching through the plasma in future tokamaks could create the current that produces the confining fields. The simulations further showed that the plasmoids would stay intact even when buffeted by three-dimensional instabilities.

In the future, Ebrahimi plans to simulate CHI startup while including even more physics about the plasma, which would provide insights to further optimize the process and to extrapolate toward next-step devices. "That's a little bit harder," she says, "but the news right now is that these simulations show that CHI is a reliable current-drive technique that could be used in fusion facilities around the world as they start to incorporate stronger magnetic fields."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Gravity crystals: A new method for exploring the physics of white dwarf stars
Fort Lauderdale FL (SPX) Oct 23, 2019
Grab a mixing bowl from your kitchen, throw in a handful of aluminum balls, apply some high voltage, and watch an elegant dance unfold where particles re-arrange themselves into a distinct "crystal" pattern. This curious behavior belongs to the phenomenon known as Wigner crystallization, where particles with the same electrical charge repel one another to form an ordered structure (Figure 1). Wigner crystallization has been observed in variety of systems, ranging from particulates the size of sand ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UAE's first astronaut urges climate protection on Earth

Scarier than fiction: climate worry driving 'cli-fi' boom

Commerce leaders introduce the NASA Authorization Act of 2019

Are we set to taste space wine

ENERGY TECH
Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

ENERGY TECH
NASA's Mars 2020 will hunt for microscopic fossils

The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

ENERGY TECH
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

ENERGY TECH
SpaceX faces competitors in race to build Internet-satellite constellation

SpaceX launches Starlink satellites with first reused rocket nose

European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

ENERGY TECH
Artificial intelligence to run the chemical factories of the future

Research reveals new state of matter with a Cooper pair metal

Theoretical tubulanes inspire ultrahard polymers

Plasma crystal research on the ISS

ENERGY TECH
Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

The most spectacular celestial vision you'll never see

ENERGY TECH
New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

NASA renames faraway ice world 'Arrokoth' after backlash

Juice cast in gold

SwRI to plan Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.