. 24/7 Space News .
TIME AND SPACE
POLAR experiment reveals orderly chaos of black holes
by Staff Writers
Beijing, China (SPX) Jan 17, 2019

Left: Merger of two neutron stars (or a black hole and a neutron star) to produce gravitational waves; Right: Gamma-ray burst.

An international consortium of scientists studying gamma-ray bursts (GRBs) as part of the POLAR (GRB polarimeter) experiment has revealed that high-energy photon emissions from black holes are neither completely chaotic nor completely organized, but a mixture. The results were published in the online version of Nature Astronomy.

GRBs are short and intense bursts of gamma-rays, which suddenly appear from deep space but randomly in direction and time. They are the brightest explosions in the universe since the Big Bang. Although discovered more than 50 years ago, the nature of GRBs is still poorly understood, especially what powers the explosions. Studying GRBs is important to understand how massive stars end their lives, black hole formation and the most relativistic jets in the universe.

The current study is based on high-precision polarization measurements for prompt emissions of five GRBs recorded by POLAR. The results show that within short time slices, GRBs are found to oscillate in the same direction, but the oscillation direction changes with time.

POLAR was launched on board the Chinese space laboratory Tiangong-2 on Sept. 15, 2016. A total of 55 GRBs were detected and confirmed within about six months. The five GRBs currently reported are part of this group and represent the largest ever high-precision sample of GRB prompt emissions.

In order to understand the GRB prompt emission mechanism, many different theoretical models have been proposed, with different predictions of the polarization properties of GRB prompt emissions.

The analysis of the five GRBs in the current study shows that the average polarization degree (~10%) is not as high as some GRB models predicted. In addition, a new finding of the evolution of the intrapulse polarization angle provides us with a new insight into the microcosmic world of GRB physics.

Measuring the prompt emission polarization of GRBs is important because it may provide information about relativistic outflow geometry and magnetic field structure. Such measurement is quite difficult, however - one reason few successful measurements were made before POLAR.

The POLAR team at the Institute of High Energy Physics (IHEP) of Chinese Academy of Sciences will continue the analysis of POLAR data.

Looking to the future, scientists from China, Switzerland, Germany and Poland have formed an expanded collaboration team to develop a much more powerful polarimeter, POLAR-2, as the successor to POLAR. POLAR-2 would be part of China's future Space Station. It would address scientific questions raised by POLAR and hopefully lead to a better understanding of GRBs.


Related Links
Chinese Academy of Sciences Headquarters
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
The orderly chaos of black holes
Geneva, Switzerland (SPX) Jan 16, 2019
During the formation of a black hole a bright burst of very energetic light in the form of gamma-rays is produced, these events are called gamma-ray bursts. The physics behind this phenomenon includes many of the least understood fields within physics today: general gravity, extreme temperatures and acceleration of particles far beyond the energy of the most powerful particle accelerators on Earth. In order to analyse these gamma-ray bursts, researchers from the University of Geneva (UNIGE), in co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

NASA Astronaut Hague Who Failed to Reach ISS May Make One-Year Flight

TIME AND SPACE
SLS liquid hydrogen tank test article loaded into test stand

SpaceX laying off 10 percent of workforce

SpaceX launches final 10 satellites for Iridium

Roscosmos introduces $15Bln cap on building Yenisei super-heavy rocket

TIME AND SPACE
UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

Over Six Months Without Word From Opportunity

TIME AND SPACE
China launches Zhongxing-2D satellite

China to deepen lunar exploration: space expert

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

TIME AND SPACE
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

Australia's 'space city' hosts rising stars from around the globe

SpaceX Falcon 9 completes Iridium Next launch campaign

The Satellite Applications Catapult partners with Infostellar to provide improved ground station access

TIME AND SPACE
Northrop Grumman to support U.S. Army's Starlite radar system

Raytheon awarded $9.3M contract for Spy-1 radar work

Raytheon to equip classic Hornet with upgraded radar

A new twist on a mesmerizing story

TIME AND SPACE
Potential for life on planet around Barnard's Star

First comprehensive, interactive tool to track SETI searches

Nature's magnifying glass reveals unexpected intermediate mass exoplanets

TESS discovers its third new planet, with longest orbit yet

TIME AND SPACE
Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.