. 24/7 Space News .
PNNL Celebrates Arrival Of Powerful NMR

A powerful magnet developed for chemical, biological and materials research was lifted by a crane on March 13, 2002, into the William R. Wiley Environmental Molecular Sciences Laboratory.

Richland - Mar 29, 2002
The Department of Energy's Pacific Northwest National Laboratory today celebrated the arrival of the world's largest, highest-performance nuclear magnetic resonance spectrometer�a first-of-its-kind 900 megahertz (MHz) wide-bore system developed by Oxford Instruments and Varian Inc.

The 900 MHz wide-bore nuclear magnetic resonance, or NMR, spectrometer is a powerful scientific instrument that may enable scientists to make new discoveries in the chemical, physical, biological and life sciences. When operational, this unique system could enhance understanding of basic molecular and cellular processes and how those relate to damage or repair to DNA, disease development and protein interactions.

NMR spectrometers are similar to the magnetic resonance imagers commonly used in hospitals yet use much stronger magnetic fields and are able to study much smaller samples than the human body.

NMR spectrometers allow scientists to determine the three-dimensional structure of molecules, viewing them atom-by-atom to obtain detailed structural pictures of complex proteins. These proteins may be associated with debilitating diseases, such as Alzheimer's and Parkinson's.

"This spectrometer will be a state-of-the-art instrument that should enable us to gain new insight into biological phenomena and deliver breakthrough science and technology," according to PNNL Director Lura Powell.

Installation of the system will complete the suite of advanced instrumentation housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility at PNNL. As a user instrument, the 900 MHz NMR will be available to other scientists through a competitive proposal process.

"We're proud to make this novel tool available to the worldwide scientific community. We want to share our capabilities so other scientists can make new discoveries important to us all," Powell said. "We appreciate the sustained effort by Oxford and Varian in making this possible."

Over the last several years, Oxford Instruments of Oxford, England, constructed the 900 MHz wide-bore magnet, which was energized in England this past December.

The magnet was delivered to PNNL on March 10 and lifted by crane into EMSL on March 13. Varian Inc. of Palo Alto, Calif., provided the rest of the NMR system, including the electronics, console, detectors, software and workstation.

Both companies now will integrate and install the system, energize the magnet�called "bringing it to field"�and evaluate the system's performance over the next few months. The first studies using the instrument are expected to begin late this summer.

Over the past 40 years, scientists have used NMR technology to advance their understanding of chemistry and molecular structure. The laboratory's 900 MHz wide-bore system is part of a global shift toward development of larger and more powerful NMRs. Greater power provides the opportunity to study larger molecules individually and in group interactions in greater detail.

When PNNL ordered the 900 MHz wide-bore system, the most powerful NMR in existence was 600 MHz. With its larger bore size and power, PNNL's new system will allow scientists to study molecules and cells at greater resolution, thereby facilitating more detailed views of a cell's physical and chemical properties and innerworkings.

DOE's Office of Biological and Environmental Research funded the 900 MHz wide-bore NMR magnet's development with $7.2 million, of which a $1.2 million final payment will be made when it is operational.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: [email protected].

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Oxford Instruments, Superconductivity is a global leader of high-field superconducting magnets and low-temperature cryogenic systems. Over 5,000 Oxford Instruments magnets are advancing NMR research applications worldwide. The company is committed to quality and innovation and won the prestigious R&D 100 award for the engineering and unique design for the manufacture of the world's first fully operational high-field 900 MHz magnet.

Related Links
Wiley Environmental Molecular Sciences Lab
Oxford Instruments
Varian NMR Technology
Fast facts on PNNL's 900 MHz wide-bore NMR
NMR collection drives cellular research
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Space Dust Can Foul Satellite Electronics
London - Nov. 8, 2000
Tiny particles of dust pose a more serious risk to satellites than huge lumps of space junk, according to a team of British scientists who have analysed damage to solar panels from the Hubble Space Telescope.







  • NASA's Fuse Satellite Lit Again
  • An Early NASA Pioneer Still On The Job In Deep Space
  • Pioneer 10 Returns Science From The Edge Of Sol
  • Distant Pioneer Sought One Last Time

  • How to Land Softly on a Hard Planet
  • Sorting Out Martian Ices
  • Mars Radiation Meter Back Online
  • University Of Dayton Geologist Recreates 'life On Mars' Evidence In Her Laboratory

  • New Skies Bird Shipped To Kourou For April launch
  • Boeing Launches NASA Data Bird
  • Boeing Satellite for NASA Scheduled to Launch
  • Atlas 3 Launches EchoStar 7

  • Digital Photos From Solar Airplane To Improve Coffee Harvest
  • Jeppesen To Supply Worldwide Aviation Weather For Merlin Satellite Broadcast Service
  • Jason 1 Ready For Service, Releases First Data
  • Ariane 5 Ready To Launch Climate Monitoring Hub

  • Exploring Pluto-Charon and the Kuiper Belt
  • Pluto Flight Plan Trimmed To Save Time, Money and Fuel
  • Nuclear Hammers and Nuclear Hamstrings
  • A Plutonic Commitment To Space Funding

  • A Bow Shock Near A Young Star
  • NASA Says Its A New Dawn For Discovery
  • A Small Spherical Universe after All?
  • Ulysses Gets A New Partner In The Hunt For The Source Of Gamma-Ray Bursts

  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Nomad Helps Keep Defense Personal
  • Europe Pushes Ahead With New GPS System Dubbed Galileo
  • GPS Helps Monitor Athletes at Utah Winter Olympics
  • Boeing Receives GPS IIF Modernization Approval

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement