![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Charlottesville VA (SPX) Feb 29, 2016
Environmental scientists at the University of Virginia have found that surface ozone, an abundant chemical known to be toxic to many species of vegetation and to humans, does not necessarily inhibit the productivity of natural ecosystems. "This is a rare piece of good news in the ozone and ecology story," said Manuel Lerdau, an ecologist who, along with graduate student Bin Wang, post-doctoral fellow Jacquelyn Shuman and Professor Hank Shugart, published their findings this week in the Nature journal Scientific Reports. Though ozone is essential to the health of the Earth in the upper atmosphere - where it shields the surface from excess ultraviolet radiation - the chemical in high concentrations at surface level is hazardous to human and animal health and to many species of plant life. Ozone becomes most abundant at the Earth's surface during the summertime as plants grow and produce chemicals, such as isoprene, that react with the hydroxyl radical and nitric oxide (which comes primarily from automobiles) to produce ozone. While it is known that ozone hinders the growth of many kinds of plants, including crop vegetation, the extent to which ozone damaged natural systems was not well understood. The new finding suggests that unmanaged forests remain productive as systems because they contain multiple tree species, each with a different sensitivity to ozone, and this differential sensitivity to the chemical allows the more resistant species to compensate for the damages suffered by the more sensitive ones. The researchers used a computer model of forest growth and production that is well-tested in a variety of ecosystems to study how species-specific responses to ozone can change the competitive interactions among species. They found that ozone changes the relative abundances of tree species, but that overall ecosystem productivity - the rate of biomass generation - and the ability of the ecosystem to store carbon do not change in the face of ozone pollution. Previous research that modeled forests broadly but not species-specifically did not discern these species-specific compensatory changes. "While our results do not mean that we can dismiss or ignore ozone's impacts on forests, they do suggest that these impacts will be more in the realm of species composition and less at the scale of forest function," Lerdau said. He added, however, that the study also indicates that low-diversity systems, such as crops and managed forests, will have maximal ozone sensitivity because of the lack of inter-species compensation. The findings also suggest that ozone-resistant species - which produce the ozone-promoting chemical isoprene - could, while increasing ozone concentrations, create favorable conditions for their own production. This facilitates a feedback loop of ever-increasingly favorable conditions for ozone-resistant species, likely to the detriment of less-resistant species. This ultimately could result in less diversified forests. "The study is an important step toward understanding how individual species and biodiversity affect the health, integrity and functioning of ecosystems," Lerdau said.
Related Links University of Virginia All about the Ozone Layer
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |