24/7 Space News
TECH SPACE
Outstanding performance of organic solar cell using tin oxide
This image shows the production of the new organic solar cells using Atomic Layer Deposition. The tin is deposited using a precursor chemical (NMe2) and oxygen is added through H2O, while the temperature is used to tune the optical and structural characteristics of the tin oxide layer
Outstanding performance of organic solar cell using tin oxide
by Staff Writers
Groningen, Netherlands (SPX) Apr 26, 2023

Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists from the University of Groningen have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material.

It has the advantage of using an unusual device structure that is produced using a scalable technique. The design involves a conductive layer of tin oxide that is grown by atomic layer deposition. The scientists also have several ideas to further improve the efficiency and stability of the cell. The results have been described in the journal Advanced Materials on 31 March.

In organic solar cells, polymers and small molecules convert light into charges that are collected at the electrodes. These cells are made as thin films of different layers-each with its own properties-that are stacked onto a substrate. Most important is the photoactive layer, which converts light into charges and separates the electrons from the holes, and the transport and blocking layer, which selectively directs the electrons towards the electrode.

Stability
'In most organic solar cells, the electron transport layer is made of zinc oxide, a highly transparent and conductive material that lays below the active layer,' says David Garcia Romero, a PhD student in the Photophysics and Optoelectronics group at the Zernike Institute for Advanced Materials at the University of Groningen, led by Professor Maria Antonietta Loi. Garcia Romero and Lorenzo Di Mario, a postdoctoral researcher in the same group, worked on the idea of using tin oxide as the transport layer. 'Zinc oxide is more photoreactive than tin oxide and, therefore, the latter should lead to a higher device stability,' he explains.

Although tin oxide had shown promising results in previous studies, the best way to grow it into a suitable transport layer for an organic solar cell had not yet been found. 'We used atomic layer deposition, a technique that had not been used in the field of organic photovoltaics for a long time,' says Garcia Romero. However, it has some important advantages: 'This method can grow layers of exceptional quality and it is scalable to industrial processes, for example in roll-to-roll processing.

Scalable
The organic solar cells that were made with tin oxide deposited by atomic layer deposition on top show a very good performance. 'We achieved a champion efficiency of 17.26 percent,' says Garcia Romero. The fill factor, an important parameter of solar cell quality, showed values up to 79 percent, in agreement with the record values for this type of structure.

Furthermore, the optical and structural characteristics of the tin oxide layer could be tuned by varying the temperature at which the material is deposited. A maximum power conversion was reached in cells with a transport layer that was deposited at 140 degrees Celsius. This same result was demonstrated for two different active layers, meaning that the tin oxide improved efficiency in a generic way.

'Our aim was to make organic solar cells more efficient and to use methods that are scalable,' says Garcia Romero. The efficiency is close to the current record for organic solar cells, which stands around 19 percent. 'And we haven't optimized the other layers yet. So, we need to push our structure a bit further.' Garcia Romero and his co-author Lorenzo di Mario are also keen to try making larger area cells. These are typically less efficient but are needed to step towards real-world applications and panels.

Improvement
The new solar cell with an impressively high fill factor is a good starting point for further development. Garcia Romero: 'It may be a bit early for industrial partners to take this on; we need to do some more research first. And we hope that our use of atomic layer deposition will inspire others in the field.' 'We always strive to understand what is happening in a material and in a device structure,' adds Professor Loi.

'Here, we think that there might be room for improvement. In that process, our tin oxide transport layer is a great initial step.' This class of solar cells may make an important extra contribution to the energy transition because of their mechanical properties and their transparency. 'We expect that they will be used in a totally different way than silicon panels,' says Loi. 'We need to think broader and out of the box at the moment.'

Research Report:Outstanding Fill Factor in Inverted Organic Solar Cells with SnO2 by Atomic Layer Deposition

Related Links
University of Groningen
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Researchers 3D print a miniature vacuum pump
Boston MA (SPX) Apr 26, 2023
Mass spectrometers are extremely precise chemical analyzers that have many applications, from evaluating the safety of drinking water to detecting toxins in a patient's blood. But building an inexpensive, portable mass spectrometer that could be deployed in remote locations remains a challenge, partly due to the difficulty of miniaturizing the vacuum pump it needs to operate at a low cost. MIT researchers utilized additive manufacturing to take a major step toward solving this problem. They 3D pri ... read more

TECH SPACE
Northrop Grumman's S.S. Sally Ride departs International Space Station

Next-Gen suit for NASA's work for space station missions debuts

NASA shares first Moon to Mars Architecture Concept review results

Russia releases first feature film shot in space

TECH SPACE
Rocket ignition test facility opens in Shaanxi

Norway irked over Swedish rocket crash on its turf

Potential Failure Modes of SpaceX's Starship

Starship moves fast and breaks things

TECH SPACE
Ensuring robotic arm safety during abrasions

Hey Percy, look at those boulders

Up and Soon, Away: Perseverance Continues Exploring the Upper Fan

Making Tracks up Marker Band Valley: Sols 3803-3804

TECH SPACE
China's space missions break new ground

China's space missions break new ground

Open cooperation, China Aerospace goes to the world

A staunch supporter of China's space undertakings

TECH SPACE
ESA's technical centre expands

Sidus Space announces oricing of $10M Public Offering

DISH TV adding to fleet with new Maxar satellite order

Nova Space to offer Space Professional Development Program for AWS Employees

TECH SPACE
Researchers 3D print a miniature vacuum pump

Deep-learning system explores materials' interiors from the outside

Heed the reed: thatcher scientist on mission to revive craft

Outstanding performance of organic solar cell using tin oxide

TECH SPACE
TESS celebrates fifth year scanning the sky for new worlds

New stellar danger to planets identified by Chandra

International team discover new exoplanet partly using direct imaging

Webb peeks into the birthplaces of exoplanets

TECH SPACE
Icy Moonquakes: Surface Shaking Could Trigger Landslides

Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

Spotlight on Ganymede, Juice's primary target

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.