![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tokyo, Japan (SPX) Jan 20, 2020
Astronomers at the National Astronomical Observatory of Japan (NAOJ) have analyzed the paths of two objects heading out of the Solar System forever and determined that they also most likely originated from outside of the Solar System. These results improve our understanding of the outer Solar System and beyond. Not all comets follow closed orbits around the Sun. Some fly through the Solar System at high speed before heading out to interstellar space, never to return. Although it is simple to calculate where these comets are going, determining where they came from is more difficult. There are two possible scenarios. In the first scenario, a comet is originally in a stable orbit far from the Sun, but gravitational interactions with a passing object pull the comet out of its orbit. The comet then falls into the inner Solar System where it can be observed before being flung out into interstellar space. In the second scenario, a comet originates someplace very far away, perhaps a different planetary system, and as it flies through interstellar space, by random chance it passes through the Solar System once before continuing on its way. Arika Higuchi and Eiichiro Kokubo at NAOJ calculated the types of trajectories which would typically be expected in each scenario. The team then compared their calculations to observations of two unusual outbound objects, 1I/'Oumuamua discovered in 2017 and 2I/Borisov discovered in 2019. They found that the interstellar origin scenario provides the better match for the paths of both objects. The team also showed that it is possible for gas-giant-sized bodies passing close to the Solar System to destabilize long-orbit comets and set them on paths similar to the paths of these two objects. Survey observations have not uncovered any gas-giant-sized bodies which can be linked to these two outbound objects, but further study, both theoretical and observational, of small interstellar objects is needed to better determine the origins of these objects.
![]() ![]() Dancing debris, moveable landscape shape Comet 67P Ithaca NY (SPX) Jan 13, 2020 A comet once thought to be a quiet dirty snowball cruising through the solar system becomes quite active when seen up close. Photography from the Rosetta mission reveals dancing gravel, whirling icy debris and transient, movable "depressions" on the smooth terrain of Comet 67P/Churyumov-Gerasimenko (Comet 67P). Alex Hayes '03, M.Eng. '03, associate professor of astronomy, presented the research at the American Geophysical Union's Fall Meeting Dec. 10. Hayes described how the process of subli ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |