Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Osmosis is not driven by water dilution
by Staff Writers
Great Barrington MA (SPX) Apr 11, 2013


File image.

Osmosis - the flow of a solvent across a semipermeable membrane from a region of lower to higher solute concentration - is a well-developed concept in physics and biophysics. The problem is that, even though the concept is important to plant and human physiology, osmosis is understood in biology and chemistry in a much simpler - and often incorrect - way.

"A range of surprising misconceptions about osmosis continue to appear in papers, web sites and textbooks," says Eric Kramer, professor of physics at Bard College at Simon's Rock in Great Barrington, Mass. "Wrong ideas about osmosis are especially common in educational materials aimed at students of chemistry and biology. Once learned, these errors influence the thinking of professionals throughout their careers."

The thermodynamic theory of osmosis was published by J.W. Gibbs in 1897, and during the next half-century dozens of other scientists published explanations for it in terms of interactions between the solute and solvent molecules. "Many of the greatest scientists of the 20th century took a turn at it," says Kramer, "A textbook in 1951 offered the first coherent telling of the whole theory."

Though physicists have had this complete and correct explanation since the 50s, chemistry and biology never caught up. Why? One reason is because the incorrect theory is much easier. "The thermodynamic explanation can be pretty dense, and features entropy, which can be scary for people," he says. "The correct theory would be harder to teach at an introductory level, although I'm working with a textbook author who plans to spread the word."

Reach back into your memory for your first science lesson on osmosis. It probably involved a demonstration with a bag of sugar with holes poked in it. When dunked into water, the water rushed into the bag. Using this example of osmosis, Kramer lays out the common misconceptions:

(1) "The first misconception is that osmosis is limited to liquids," he says. "But it works just fine for gases, too."

(2) "Another misconception that osmosis requires an attractive force," he says. "It doesn't. When water fills the bag of sugar, it's not because the sugar is pulling the water in. That's not part of the explanation."

(3) "A misconception is that osmosis always happens down a concentration gradient," he says. "When you dissolve something in water, the water doesn't necessarily get more diluted. Depending on the substance, it can get more concentrated."

(4) "Anther misconception is that you don't need to invoke a force to explain why the water flows into the bag. It's thought that, like diffusion, it's a spontaneous process," he says. "But, in fact, there is a force. It's complicated how it happens, but it turns out that the membrane - or the bag, in the familiar lab demonstration - exerts a force that pushes the water in."

"These misconceptions are surprisingly robust," says Kramer. "Nearly all have been discussed by other authors during the long history of osmotic research, and yet they continue to find believers in each generation of professionals. While authors in physics and biophysics have generally settled on the correct understanding of osmosis, these ideas have not penetrated into the fields of chemistry and biology. It's very surprising that, in 60 years, no physicist talked to a chemist long enough to figure this out."

Kramer is co-author, with colleague and chemist David Myers, of the article, "Osmosis is not driven by water dilution," in the April issue of Trends in Plant Science. They have authored a previous article, "Five popular misconceptions about osmosis," in the American Journal of Physics (August, 2012).

.


Related Links
Dick Jones Communications
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Dead fish cause for concern in China river
Shanghai, China (UPI) Apr 8, 2013
Dead fish found on the shorelines of a Shanghai river have sparked safety fears. Small carp-type dead fish were first sighted last week in a river in Shanghai's Songjiang district, China Daily reported Monday, and larger dead carp over the weekend, hundreds of fish in all. So far about 551 pounds of fish have been retrieved. The incident comes less than a month after thousands ... read more


WATER WORLD
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

WATER WORLD
Shaking ExoMars

Astronaut's radiation study will be critical for Mars mission

Remaining Martian Atmosphere Still Dynamic

Registration Opens for NASA Night Rover Energy Challenge

WATER WORLD
Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

WATER WORLD
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

WATER WORLD
Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

WATER WORLD
Arianespace receives the second Vega for launch from French Guiana

Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

WATER WORLD
Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

WATER WORLD
Accidental discovery may lead to improved polymers

What's between a slip and a slide?

Light may recast copper as chemical industry 'holy grail'

New camera system creates high-resolution 3-D images from up to a kilometer away




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement