![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Atlanta GA (SPX) Oct 23, 2018
By merging the ancient art of origami with 21st century technology, researchers have created a one-step approach to fabricating complex origami structures whose light weight, expandability, and strength could have applications in everything from biomedical devices to equipment used in space exploration. Until now, making such structures has involved multiple steps, more than one material, and assembly from smaller parts. "What we have here is the proof of concept of an integrated system for manufacturing complex origami. It has tremendous potential applications," said Glaucio H. Paulino, a professor at the School of Civil and Environmental Engineering at the Georgia Institute of Technology and a leader in the growing field of origami engineering, or using the principles of origami, mathematics and geometry to make useful things. Last fall Georgia Tech became the first university in the country to offer a course on origami engineering, which Paulino taught. The researchers used a relatively new kind of 3D printing called Digital Light Processing (DLP) to create groundbreaking origami structures that are not only capable of holding significant weight but can also be folded and refolded repeatedly in an action similar to the slow push and pull of an accordion. When Paulino first reported these structures, or "zippered tubes," in 2015, they were made of paper and required gluing. In the current work, the zippered tubes - and complex structures made out of them - are composed of one plastic (a polymer) and do not require assembly. The work was reported in a recent issue of Soft Matter, a journal published by the Royal Society of Chemistry. The primary authors are Paulino; H. Jerry Qi, a professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering; and Daining Fang of Peking University and the Beijing Institute of Technology. Other authors are Zeang Zhao, a visiting student at Georgia Tech now at Peking University; Qiang Zhang of Peking University; and Xiao Kuang and Jiangtao Wu of Georgia Tech.
An Emerging Technology Enter DLP and some creative engineering. According to Qi, a leader in the emerging field collaborating with Fang's group at Peking University, DLP has been in the lab for a while, but commercialization only began about five years ago. Unlike other 3D printing techniques, it creates structures by printing successive layers of a liquid resin that is then cured, or hardened, by ultraviolet light. For the current work, the researchers first developed a new resin that, when cured, is very strong. "We wanted a material that is not only soft, but can also be folded hundreds of times without breaking," said Qi. The resin, in turn, is key to an equally important element of the work: tiny hinges. These hinges, which occur along the creases where the origami structure folds, allow folding because they are made of a thinner layer of resin than the larger panels of which they are part. (The panels make up the bulk of the structure.) Together the new resin and hinges worked. The team used DLP to create several origami structures ranging from the individual origami cells that the zippered tubes are composed of to a complex bridge composed of many zippered tubes. All were subjected to tests that showed they were not only capable of carrying about 100 times the weight of the origami structure, but also could be repeatedly folded and unfolded without breaking. "I have a piece that I printed about six months ago that I demonstrate for people all the time, and it's still fine," said Qi.
What's Next?
Research Report: "3D printing of complex origami assemblages for reconfigurable structures,"
![]() ![]() Russian firm mulls sending duplicate 3D Bioprinter to ISS after Soyuz failure Moscow (Sputnik) Oct 15, 2018 The Russian 3D Bioprinting Solutions company is preparing to send the duplicate equipment for experiments at the International Space Station (ISS) in the near future, the company's co-founder and managing partner, Yousef Hesuani, said. "Organ.Aut and cosmonauts have a duplicate [of the printer], it will be ready to fly to the ISS in the near future. We will work out a separate cycle graph of the experiment for preparing the flight at the Progress spacecraft. The current crew has already conf ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |