. 24/7 Space News .
STELLAR CHEMISTRY
One step closer to understanding the Milky Way
by Staff Writers
Berlin (SPX) Jun 16, 2022

Gaia measures the movement of the stars.

Unravelling the mysteries of the Milky Way and mapping it in the process is one of the main goals of the Gaia mission. On 13 June 2022, the mission came a step closer to achieving this with the publication of the complete third star catalogue.

Gaia observed and measured approximately 1.8 billion celestial objects for this purpose. By the expected end of the mission in 2025, the largest and most accurate star catalogue to date, comprising around two billion celestial bodies, will have been created.

Largest census of binary stars to date
"In the last 34 months, Gaia has gained many new insights and significantly expanded the previous catalogue," explains Alessandra Roy, Gaia Project Manager at the German Space Agency at DLR. "For example, the data contains the positions of around 156,000 small bodies, such as asteroids, in the Solar System. Another highlight is the largest census of binary stars in the Milky Way to date, which is crucial to understanding the formation of stars." In addition, Gaia observed and documented numerous exoplanet transits.

To achieve its scientific goals, Gaia has to record hundreds of celestial objects per second almost continuously. To do this, the spacecraft maps the objects in the Milky Way in three dimensions by measuring their positions, their distances from and their velocities with respect to Earth. The scientific instruments on board measure the apparent displacement of the stars in the sky resulting from Earth's orbit around the Sun (stellar parallax) and distinguish it from their real movement through the galaxy.

Even for the nearest stars, the apparent motion is tiny - it is less than one arcsecond. Gaia measures the position of stars to an accuracy of about one 20-millionth of an arcsecond, "This is equivalent to measuring the diameter of a human hair by an observer positioned 1000 kilometres away," Roy clarifies.

"But the spacecraft can do more than that; it also determines the brightness, temperature and chemical composition as well as the age of the nearly two billion objects observed." All these parameters are important for understanding the lifecycle and origin of the observed stars.

Big Data in space
This enormous amount of information is analysed by the Data Processing and Analysis Consortium (DPAC). DPAC is a collaboration of around 400 researchers and software engineers working in six different computer centres across Europe. The processed data are already being used successfully by researchers worldwide; since the beginning of the mission, the information from Gaia has been the basis for around 8000 scientific publications.

Celestial objects have been documented since antiquity; the first star catalogue was compiled in the second century BC by the Greek astronomer Hipparchus of Nicaea. Since then, the records have become increasingly precise. But the measurement of star positions from the ground is limited by the turbulence of Earth's atmosphere.

ESA's Hipparcos mission (1989-1993) was the first astrometry space mission and mapped about 120,000 stars. The complete Gaia catalogue will be 10,000 to 20,000 times larger than that of Hipparcos, as it will contain measurements of the physical parameters and 3D positions of about one percent of the hundred billion stars in our galaxy. The accuracy of the Gaia information also exceeds that of the previous data by a factor of 20 to 50.

The Gaia mission was launched in 2013 and has been collecting scientific data ever since. The publication of this information is divided into individual catalogues due to the enormous amount of data. The first release, which took place in September 2014, already included the parallaxes and proper motions of around two million stars.

The second Gaia release in April 2018 already contained 1.3 billion measurements and was even more accurate than the first. The third catalogue was split into two instalments - the early data release (eDR3), published in December 2020, and the full third data release (DR3) on 13 June 2022.

Two more releases are currently planned. The fourth Gaia catalogue will be based on data from the first five years since Gaia's launch and is scheduled to be published by the end of 2025. It will contain complete astrometric and photometric data for nearly two billion stars, as well as a list of variable stars, multiple star systems and exoplanets. Due to a possible mission extension to 2025, a fifth catalogue is planned, which is expected to be published in 2030.

The new Gaia data is available in the Gaia archive as of 12:00 CEST on 13 June 2022.


Related Links
Gaia at ESA
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Gaia sees strange stars in most detailed Milky Way survey to date
Paris (ESA) Jun 14, 2022
Today, ESA's Gaia mission releases its new treasure trove of data about our home galaxy. Astronomers describe strange 'starquakes', stellar DNA, asymmetric motions and other fascinating insights in this most detailed Milky Way survey to date. Gaia is ESA's mission to create the most accurate and complete multi-dimensional map of the Milky Way. This allows astronomers to reconstruct our home galaxy's structure and past evolution over billions of years, and to better understand the lifecycle of star ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
South Korea space rocket launch puts satellites in orbit

ISS maneuvered around Russian satellite debris

Sidus Space working with NASA team for Extravehicular Activity Services Contract

Sierra Space to train astronauts at Kennedy Space Center for Orbital Reef

STELLAR CHEMISTRY
Go ahead for second round of micro-launcher payload competition

SpaceX Falcon 9 launches for its 13th time, a record for the company

Three-stage engine of China's new manned carrier rocket to enter prototype development

FAA requires SpaceX to make environmental changes to Starbase in Texas

STELLAR CHEMISTRY
Researcher awarded $100,000 to identify potential fuel source on Mars

Martian meteorite upsets planet formation theory

A summer science smorgasbord: Sols 3505-3506

A blueprint for life forms on Mars

STELLAR CHEMISTRY
China's deep space exploration laboratory starts operation

Chinese official says its Mars sample mission will beat NASA back to Earth

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

STELLAR CHEMISTRY
Globalstar announces successful launch of spare satellite

Airbus built MEASAT-3d communications satellite ready for launch

NASA, ESA discuss sending first European to Moon

AST SpaceMobile to launch BlueWalker 3 for Direct-to-Cell Phone Connectivity Testing

STELLAR CHEMISTRY
ESA boosts the satellite-enabled 5G media market

A new ESA giant in Australia

China develops new coating for spacecraft thermal control

MOONRISE: LZH and TU Berlin bring 3D printing to the Moon with laser and AI

STELLAR CHEMISTRY
NASA mission discovers 2 Earth-like exoplanets

Did a giant radio telescope in China just discover aliens? Not so FAST

Dead star caught ripping up planetary system

UK Government takes leading role in new space telescope to explore exoplanets

STELLAR CHEMISTRY
SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.