. | . |
One step closer to complex quantum teleportation by Staff Writers Vienna, Austria (SPX) Nov 05, 2018
For future technologies such as quantum computers and quantum encryption, the experimental mastery of complex quantum systems is inevitable. Scientists from the University of Vienna and the Austrian Academy of Sciences have succeeded in making another leap. While physicists around the world are trying to increase the number of two-dimensional systems, so-called qubits, researchers around Anton Zeilinger are breaking new ground. They pursue the idea to use more complex quantum systems as qubits and thus can increase the information capacity with the same number of particles. The developed methods and technologies could in the future enable the teleportation of complex quantum systems. The results of their work "Experimental Greenberger-Horne-Zeilinger Entanglement Beyond QuBits" is published recently in the renowned journal Nature Photonics. Similar to bits in conventional computers, QuBits are the smallest unit of information in quantum systems. Big companies like Google and IBM are competing with research institutes around the world to produce an increasing number of entangled QuBits The clear motivation is to develop a functioning quantum computer. A research group at the University of Vienna and the Austrian Academy of Sciences, however, is pursuing a new path to increase the information capacity of complex quantum systems. The idea behind it is simple: instead of just increasing the number of particles involved, the complexity of each system is increased. "The special thing about our experiment is that for the first time it entangles three photons beyond the conventional two-dimensional nature," explains Manuel Erhard, first author of the study. For this purpose, the Viennese physicists use quantum systems which have more than two possible states - in this particular case, the angular momentum of individual light particles. These individual photons now have a higher information capacity than QuBits. However, the entanglement of these light particles turned out to be difficult on a conceptual level. The researchers overcame this challenge with a ground-breaking idea: a computer algorithm that autonomously searches for an experimental implementation. With the help of the computer algorithm Melvin an experimental setup to produce this type of entanglement has been uncovered. At first this was still very complex, but at least it worked in principle. After some simplifications, physicists still faced major technological challenges. The team was able to solve these with state-of-the-art laser technology and a specially developed multi-port. "This multi-port is the heart of our experiment and combines the three photons so that they are entangled in three dimensions," explains Manuel Erhard. The peculiar property of the three-photon entanglement in three dimensions allows for experimental investigation of new fundamental questions about the behaviour of quantum systems. In addition, the results of this work could also have a significant impact on future technologies, such as quantum teleportation. "I think the methods and technologies that we developed in this publication allow us to teleport a higher proportion of the total quantum information of a single photon, which could be important for quantum communication networks," Anton Zeilinger points out into the future of possible applications.
Research Report: "Experimental Greenberger-Horne-Zeilinger Entanglement Beyond QuBits"
JILA researchers see signs of interactive form of quantum matter Washington DC (SPX) Nov 01, 2018 JILA researchers have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. The advance will help scientists control interacting quantum matter, which is expected to boost the performance of atomic clocks, many other types of sensors, and quantum information systems. The research is described in a Nature paper posted early online Oct. 31. JILA is jointly operated by the National Institute of Standards and Technology (NI ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |