![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Chicago IL (SPX) May 03, 2016
In the world of chemistry, one minus one almost always equals zero. But new research from Northwestern University and the Centre National de la Recherche Scientifique (CNRS) in France shows that is not always the case. And the discovery will change scientists' understanding of mirror-image molecules and their optical activity. In 1848, Louis Pasteur showed that molecules that are mirror images of each other had exactly opposite rotations of light. When these "left-handed" and "right-handed" molecules are mixed together in solution, however, they cancel the effects of the other, and no rotation of light is observed. Thus, "one minus one equals zero." Now, Northwestern's Kenneth R. Poeppelmeier and his research team are the first to demonstrate that a mixture of mirror-image molecules crystallized in the solid state can be optically active. The scientists first designed and made the materials and then measured their optical properties. The findings, published April 18 by the journal Nature Materials, open up a promising area of materials research. "In our case, one minus one does not always equal zero," said first author Romain Gautier of CNRS. "This discovery will change scientists' understanding of these molecules, and new applications could emerge from this observation." The property of rotating light, which has been known for more than two centuries to exist in many molecules, already has many applications in medicine, electronics, lasers and display devices. "The phenomenon of optical activity can occur in a mixture of mirror-image molecules, and now we've measured it," said Poeppelmeier, a Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. "This is an important experiment." Although this phenomenon has been predicted for a long time, no one - until now - had created such a racemic mixture (a combination of equal amounts of mirror-image molecules) and measured the optical activity. "How do you deliberately create these materials?" Poeppelmeier said. "That's what excites me as a chemist." He and Gautier painstakingly designed the material, using one of four possible solid-state arrangements known to exhibit circular dichroism (the ability to absorb differently the "rotated" light). Next, Richard P. Van Duyne, a Morrison Professor of Chemistry at Northwestern, and graduate student Jordan M. Klingsporn measured the material's optical activity, finding that mirror-image molecules are active when arranged in specific orientations in the solid state. Research paper: "Optical Activity from Racemates."
Related Links Northwestern University Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |