![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Paris (ESA) Apr 15, 2020
Since March 2017, ESA's NELIOTA project has been regularly looking out for 'lunar flashes' on the Moon, to help us better understand the threat posed by small asteroid impacts. The project detects the flash of light produced when an asteroid collides energetically with the lunar surface, and recently recorded its 100th impact. But this time, it was not the only one watching. Earth is constantly bombarded by natural space debris - fragments of comets and asteroids, also known as meteoroids. The majority burn up in our atmosphere, but some objects, particularly those larger than a few metres, are potentially dangerous and their number is not well known. Smaller Earth impactors are too small to be detected directly with telescopes and too unpredictable to be captured reliably with ground-based 'fireball' cameras. Instead, to get an idea of how common these objects are and their potential threat to Earth, we look to the Moon. The Moon's atmosphere is negligible, with a total mass of less than 10 tonnes. As such, even tiny asteroids travelling at fast speeds leave an impact - as illustrated by its heavily cratered surface. When meteoroids or small asteroids strike the lunar surface at high speed, they generate a flash of light that, if bright enough, is visible from Earth. Scientists can use the brightness of a flash to estimate the size and mass of the object that caused it, and improve our understanding of how often similar objects are colliding with Earth. Typically, asteroids weighing less than 100 g and measuring less than 5 cm create these observable lunar flashes.
NELIOTA NELIOTA is funded by ESA and operated by the National Observatory of Athens at Kryoneri Observatory in Greece. It uses a 1.2 m telescope and a twin-camera system that splits the light of the lunar flash into two colours. This helps scientists to estimate another important feature of an impact, its temperature. Since the project began, it has conducted a total of approximately 149 hours of lunar monitoring and detected 102 lunar flashes.
A second opinion Using a 35 cm telescope, a newly established team at the Sharjah Lunar Impact Observatory (SLIO) of the Sharjah Academy for Astronomy, Space Sciences and Technology, UAE, detected a flash on 1 March 2020. It was later confirmed that this flash was from the same event as the 100th NELIOTA detection. "Cross detections like this are very useful as they rule out the possibility of a slow, bright satellite being misidentified as an impact flash," says Detlef Koschny, co-manager of the Planetary Defence Office of ESA's Space Safety programme. "While NELIOTA has other, less direct means of excluding such events, we're excited to have more eyes on the Moon, helping us to understand the rocky road our planet travels on". Observing the same suspected lunar impact event from different locations is a very effective way to spot this type of false detection. Other lunar impact flash observers can cross-check their data with that of NELIOTA - all flashes detected by the system are posted on the NELIOTA website within 24 hours.
![]() ![]() Rehearsal Time for NASA's Asteroid Sampling Spacecraft Tucson AZ (SPX) Apr 13, 2020 In August, a robotic spacecraft will make NASA's first-ever attempt to descend to the surface of an asteroid, collect a sample, and ultimately bring it safely back to Earth. In order to achieve this challenging feat, the OSIRIS-REx mission team devised new techniques to operate in asteroid Bennu's microgravity environment - but they still need experience flying the spacecraft in close proximity to the asteroid in order to test them. So, before touching down at sample site Nightingale this summer, OSIRIS ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |