. 24/7 Space News .
CAR TECH
On the road to cleaner, greener, and faster driving
by Adam Zewe for MIT News
Boston MA (SPX) May 18, 2022

In a new study, MIT researchers demonstrate a machine-learning approach that can learn to control a fleet of autonomous vehicles as they approach and travel through a signalized intersection in a way that keeps traffic flowing smoothly.

No one likes sitting at a red light. But signalized intersections aren't just a minor nuisance for drivers; vehicles consume fuel and emit greenhouse gases while waiting for the light to change.

What if motorists could time their trips so they arrive at the intersection when the light is green? While that might be just a lucky break for a human driver, it could be achieved more consistently by an autonomous vehicle that uses artificial intelligence to control its speed.

In a new study, MIT researchers demonstrate a machine-learning approach that can learn to control a fleet of autonomous vehicles as they approach and travel through a signalized intersection in a way that keeps traffic flowing smoothly.

Using simulations, they found that their approach reduces fuel consumption and emissions while improving average vehicle speed. The technique gets the best results if all cars on the road are autonomous, but even if only 25 percent use their control algorithm, it still leads to substantial fuel and emissions benefits.

"This is a really interesting place to intervene. No one's life is better because they were stuck at an intersection. With a lot of other climate change interventions, there is a quality-of-life difference that is expected, so there is a barrier to entry there. Here, the barrier is much lower," says senior author Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in the Department of Civil and Environmental Engineering and a member of the Institute for Data, Systems, and Society (IDSS) and the Laboratory for Information and Decision Systems (LIDS).

The lead author of the study is Vindula Jayawardana, a graduate student in LIDS and the Department of Electrical Engineering and Computer Science. The research will be presented at the European Control Conference.

Intersection intricacies
w While humans may drive past a green light without giving it much thought, intersections can present billions of different scenarios depending on the number of lanes, how the signals operate, the number of vehicles and their speeds, the presence of pedestrians and cyclists, etc.

Typical approaches for tackling intersection control problems use mathematical models to solve one simple, ideal intersection. That looks good on paper, but likely won't hold up in the real world, where traffic patterns are often about as messy as they come.

Wu and Jayawardana shifted gears and approached the problem using a model-free technique known as deep reinforcement learning. Reinforcement learning is a trial-and-error method where the control algorithm learns to make a sequence of decisions. It is rewarded when it finds a good sequence. With deep reinforcement learning, the algorithm leverages assumptions learned by a neural network to find shortcuts to good sequences, even if there are billions of possibilities.

This is useful for solving a long-horizon problem like this; the control algorithm must issue upwards of 500 acceleration instructions to a vehicle over an extended time period, Wu explains.

"And we have to get the sequence right before we know that we have done a good job of mitigating emissions and getting to the intersection at a good speed," she adds.

But there's an additional wrinkle. The researchers want the system to learn a strategy that reduces fuel consumption and limits the impact on travel time. These goals can be conflicting.

"To reduce travel time, we want the car to go fast, but to reduce emissions, we want the car to slow down or not move at all. Those competing rewards can be very confusing to the learning agent," Wu says.

While it is challenging to solve this problem in its full generality, the researchers employed a workaround using a technique known as reward shaping. With reward shaping, they give the system some domain knowledge it is unable to learn on its own. In this case, they penalized the system whenever the vehicle came to a complete stop, so it would learn to avoid that action.

Traffic tests
Once they developed an effective control algorithm, they evaluated it using a traffic simulation platform with a single intersection. The control algorithm is applied to a fleet of connected autonomous vehicles, which can communicate with upcoming traffic lights to receive signal phase and timing information and observe their immediate surroundings. The control algorithm tells each vehicle how to accelerate and decelerate.

Their system didn't create any stop-and-go traffic as vehicles approached the intersection. (Stop-and-go traffic occurs when cars are forced to come to a complete stop due to stopped traffic ahead). In simulations, more cars made it through in a single green phase, which outperformed a model that simulates human drivers.

When compared to other optimization methods also designed to avoid stop-and-go traffic, their technique resulted in larger fuel consumption and emissions reductions. If every vehicle on the road is autonomous, their control system can reduce fuel consumption by 18 percent and carbon dioxide emissions by 25 percent, while boosting travel speeds by 20 percent.

"A single intervention having 20 to 25 percent reduction in fuel or emissions is really incredible. But what I find interesting, and was really hoping to see, is this non-linear scaling. If we only control 25 percent of vehicles, that gives us 50 percent of the benefits in terms of fuel and emissions reduction. That means we don't have to wait until we get to 100 percent autonomous vehicles to get benefits from this approach," she says.

Down the road, the researchers want to study interaction effects between multiple intersections. They also plan to explore how different intersection set-ups (number of lanes, signals, timings, etc.) can influence travel time, emissions, and fuel consumption. In addition, they intend to study how their control system could impact safety when autonomous vehicles and human drivers share the road. For instance, even though autonomous vehicles may drive differently than human drivers, slower roadways and roadways with more consistent speeds could improve safety, Wu says.

While this work is still in its early stages, Wu sees this approach as one that could be more feasibly implemented in the near-term.

"The aim in this work is to move the needle in sustainable mobility. We want to dream, as well, but these systems are big monsters of inertia. Identifying points of intervention that are small changes to the system but have significant impact is something that gets me up in the morning," she says.

"Professor Cathy Wu's recent work shows how eco-driving provides a unified framework for reducing fuel consumption, thus minimizing carbon dioxide emissions, while also giving good results on average travel time. More specifically, the reinforcement learning approach pursued in Wu's work, by leveraging the use of connected autonomous vehicles technology, provides a feasible and attractive framework for other researchers in the same space," says Ozan Tonguz, professor of electrical and computer engineering at Carnegie Mellon University, who was not involved with this research. "Overall, this is a very timely contribution in this burgeoning and important research area."

Research Report:"Learning Eco-Driving Strategies at Signalized Intersections"


Related Links
Laboratory for Information and Decision Systems
Car Technology at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CAR TECH
Dirty liberal pipe-dream: 3 myths about electric cars
Paris (AFP) May 16, 2022
Sceptics say that far from helping save the planet, electric cars are a liberal pipe-dream whose environmental benefits are exaggerated. But even if there is no such thing as an all-green car, studies show that battery-powered ones cause fewer harmful greenhouse gas overall than their petrol-driven ancestors. AFP Fact Check examined three common claims about them. 'Coal-powered' "Coal Powered Electric Cars.... Helping liberals pretend they are solving a make-believe crisis," reads a text ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CAR TECH
Boeing's Starliner to launch uncrewed test flight to International Space Station

ISS Partnership faces 'Administrative Difficulties' NASA Panel Says

Wealthy nations carving up space and its riches, leaving others behind

Scientists successfully grow plants in soil from the Moon

CAR TECH
Bolsonaro to meet Elon Musk in Brazil: government source

Musk, Bolsonaro talk free speech, deforestation in Brazil

Boeing's Starliner encounters propulsion problems on way to ISS

US Air Force and Lockheed Martin complete ARRW hypersonic boosted test flight

CAR TECH
Could people breathe the air on Mars

Next Stop: Hawksbill Gap

New study indicates limited water circulation late in the history of Mars

Study reveals new way to reconstruct past climate on Mars

CAR TECH
China's cargo craft docks with space station combination

China launches the Tianzhou 4 cargo spacecraft

China prepares to launch Tianzhou-4 cargo spacecraft

China launches Jilin-1 commercial satellites

CAR TECH
Reached your entrepreneurial limit? Hire a marketer, study suggests

Kepler provides on-orbit high-capacity data service to Spire Global

Plans unveiled to better connect space industries in Scotland and the UAE

Rocket Lab launches BRO-6 for Unseenlabs

CAR TECH
Floquet matter and metamaterials: Time to join forces

Researchers unveil a secret of stronger metals

Microsoft moves to avert EU antitrust clash over cloud

Advancing fundamental drilling science

CAR TECH
The origin of life: A paradigm shift

Researchers reveal the origin story for carbon-12, a building block for life

Planet-forming disks evolve in surprisingly similar ways

Experiments measure freezing point of extraterrestrial oceans to aid search for life

CAR TECH
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.