. 24/7 Space News .
STELLAR CHEMISTRY
Old hearts might be solution to red giants' age paradox
by Staff Writers
Gottingen, Germany (SPX) Jun 28, 2019

illustration only

A group of red giants discovered four years ago seems to be old and young at the same time. Scientists now prove that they are indeed old - and a result of star mergers.

Four years ago, several red giant stars were discovered to pose a paradox: even though they are built from very old stellar material, their large masses indicate a clearly younger age. Scientists from the Max Planck Institute for Solar System Research (Germany), Aarhus University (Denmark), and Ohio State University (USA) have now solved the apparent contradiction. For the first time, they investigated the abundances of carbon, nitrogen, and oxygen swirled from the nuclei of these stars to their surfaces.

This allows for an indirect look at processes deep within. Several of the investigated red giants must have merged with others during an advanced stage of stellar evolution, the researchers conclude. In these cases, mass is not a suitable criterion for age determination; the stars are indeed old.

Main sequence star, red giant, white dwarf - in the course of their lifespan covering millions or even billions of years, stars pass through different stages of stellar evolution - all differing greatly in appearance. Yet, stars do not reveal their ages easily, at least not at first glance. The duration of each phase differs too greatly from star to star. With deeper look, however, researchers can reconstruct the star's life story. Various methods now make it possible to reliably determine the age of a star.

But there are tricky cases: Four years ago, two groups of researchers led by the Leibniz Institute for Astrophysics and the Max Planck Institute for Astronomy discovered confusing red giant stars. The results of different age measurements diverged by a full four billion years. "The stars seemed to be old and young at the same time," Dr. Saskia Hekker from MPS and the University of Aarhus in Denmark, who was part of both discovery teams at the time and is now the first author of the new study, recalls.

"This apparent paradox has intrigued me ever since," she adds. Together with her colleague Dr. Jennifer A. Johnson from Ohio State University, she has now solved the mystery of some of these stars. Both researchers are convinced that the strange stars only feign youthfulness.

The red giants' building material points to an ancient age of more than 10 billion years. The stars contain comparatively little iron, an element that in the course of galactic evolution was produced only slowly. Old stars therefore contain little iron compared to other substances such as magnesium, silicon, and calcium, while young stars contain more.

In order to determine these elements' ratios scientists split the light from the respective star into its individual wavelengths. In this so-called spectrum, each element found within the star leaves a characteristic fingerprint. Another method of age determination looks at the oscillations of a star. With methods of asteroseismology it is possible to then deduce the star's mass.

Since particularly high temperatures prevail inside heavy stars, their fuel burns comparatively quickly. Heavy stars therefore have a much shorter life expectancy than low-mass ones. The red giants in question proved to be true heavyweights. The asteroseismic method therefore yields ages of less than 6 billion years.

The new investigation now solves this contradiction. The researchers were able to show that some of the stars look back on an extremely eventful past. "Some of the mysterious stars must have merged with others during or after their transformation into red giants," Dr. Saskia Hekker summarizes the results. "Their large mass is not an original property and therefore not suitable for age determination," she adds. "The stars are indeed old."

Key to these results were the amounts of carbon, nitrogen, and oxygen found at the surface of the stars. These elements allow for an indirect look into the stellar interior. When so-called main sequence stars, i.e. those in the same stage of development as the Sun, turn into red giants towards the end of their life, their inner workings change: carbon, nitrogen, and oxygen, which are formed in the nucleus, can be dredged up to the surface in huge plasma currents and can then be detected. Depending on how hot - and thus massive - the star in question is, the elements can be found in different ratios.

In some of their measurements, the researchers found values typical for low-mass stars. "Before they became red giants, these stars must have been comparatively light," concludes Dr. Jennifer Johnson from the Ohio State University. "Their current high mass can be explained by the fact that as red giants they have merged with other stars," she argues.

The explanation does not apply to all the stars studied. For some, the high mass determined years ago by means of asteroseismology coincides well with the presence of carbon, nitrogen, and oxygen at their surface. "These stars could have merged with others at an earlier stage of development before nuclear material was swirled to the surface," says Hekker. A final explanation is still pending.

The new study also offers a new approach to the question of how often stars collide and merge as a result. Red giants with such a turbulent past could now be tracked down via the detour of age determination.

Research Reports
+ "Origin of Alpha-Rich Young Stars: Clues from C, N and O,"
+ "Young [Alpha/Fe]-Enhanced Stars Discovered by CoRoT and APOGEE: What Is Their Origin?"
+ "Young Alpha-Enriched Giant Stars in the Solar Neighbourhood,"


Related Links
Max Planck Institute for Solar System Research
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Cool halo gas caught spinning like galactic disks
Maunakea HI (SPX) Jun 19, 2019
A group of astronomers led by Crystal Martin and Stephanie Ho of the University of California, Santa Barbara, has discovered a dizzying cosmic choreography among typical star-forming galaxies; their cool halo gas appears to be in step with the galactic disks, spinning in the same direction. The researchers used W. M. Keck Observatory to obtain the first-ever direct observational evidence showing that corotating halo gas is not only possible, but common. Their findings suggest that the whirling gas ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Soyuz capsule safely returns three space station crew members to Earth

Planetary Society's LightSail 2 Launched by Falcon Heavy

Hacker used $35 computer to steal restricted NASA data

Russian, North American astronauts return to earth

STELLAR CHEMISTRY
Ariane 5 launches T-16 and EUTELSAT 7C satellites

GREEN propellant infusion mission to test AFRL-developed green propellant

Swedish Space Corporation to introduce a new service for easy access to space

Raytheon, Northrop Grumman partner on hypersonic missile system

STELLAR CHEMISTRY
Life on Mars Was Possible After Last Great Meteorite Impact

Experiments with salt-tolerant bacteria in brine have implications for life on Mars

Curiosity detects unusually high methane levels

A Rover for Phobos and Deimos

STELLAR CHEMISTRY
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

STELLAR CHEMISTRY
All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Israeli space tech firm hiSky expands to the UK

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

STELLAR CHEMISTRY
Machine Learning Tool Searches Star Data for Likely Exoplanet Hosts

Researchers see around corners to detect object shapes

ESA awards Siemens and Sonaca contract to design new additive manufacturing applications

AFRL produces lighter, thinner transparent armor

STELLAR CHEMISTRY
ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

Planet Seeding and Panspermia

View of the Earth in front of the Sun

Most Comprehensive Search for Radio Technosignatures

STELLAR CHEMISTRY
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.