. 24/7 Space News .
STELLAR CHEMISTRY
OPERA Collaboration Presents Its Final Results on Neutrino Oscillations
by Staff Writers
Geneva, Switzerland (SPX) May 23, 2018

View of the OPERA detector (on the CNGS facility) with its two identical Super Modules, each one containing one target section and one spectrometer

he OPERA experiment, located at the Gran Sasso Laboratory of the Italian National Institute for Nuclear Physics (INFN), was designed to conclusively prove that muon-neutrinos can convert to tau-neutrinos, through a process called neutrino oscillation, whose discovery was awarded the 2015 Nobel Physics Prize.

In a paper published in the journal Physical Review Letters, the OPERA collaboration reports the observation of a total of 10 candidate events for a muon to tau-neutrino conversion, in what are the very final results of the experiment.

This demonstrates unambiguously that muon neutrinos oscillate into tau neutrinos on their way from CERN, where muon neutrinos were produced, to the Gran Sasso Laboratory 730 km away, where OPERA detected the ten tau neutrino candidates.

Today the OPERA collaboration has also made their data public through the CERN Open Data Portal. By releasing the data into the public domain, researchers outside the OPERA Collaboration have the opportunity to conduct novel research with them.

The datasets provided come with rich context information to help interpret the data, also for educational use. A visualiser enables users to see the different events and download them. This is the first non-LHC data release through the CERN Open Data portal, a service launched in 2014.

There are three kinds of neutrinos in nature: electron, muon and tau neutrinos. They can be distinguished by the property that, when interacting with matter, they typically convert into the electrically charged lepton carrying their name: electron, muon and tau leptons. It is these leptons that are seen by detectors, such as the OPERA detector, unique in its capability of observing all three.

Experiments carried out around the turn of the millennium showed that muon neutrinos, after travelling long distances, create fewer muons than expected, when interacting with a detector. This suggested that muon neutrinos were oscillating into other types of neutrinos.

Since there was no change in the number of detected electrons, physicists suggested that muon neutrinos were primarily oscillating into tau neutrinos. This has now been unambiguously confirmed by OPERA, through the direct observation of tau neutrinos appearing hundreds of kilometres away from the muon neutrino source. The clarification of the oscillation patterns of neutrinos sheds light on some of the properties of these mysterious particles, such as their mass.

The OPERA collaboration observed the first tau-lepton event (evidence of muon-neutrino oscillation) in 2010, followed by four additional events reported between 2012 and 2015, when the discovery of tau neutrino appearance was first assessed.

Thanks to a new analysis strategy applied to the full data sample collected between 2008 and 2012 - the period of neutrino production - a total of 10 candidate events have now been identified, with an extremely high level of significance.

"We have analysed everything with a completely new strategy, taking into account the peculiar features of the events," said Giovanni De Lellis, Spokesperson for the OPERA collaboration.

"We also report the first direct observation of the tau neutrino lepton number, the parameter that discriminates neutrinos from their antimatter counterpart, antineutrinos. It is extremely gratifying to see today that our legacy results largely exceed the level of confidence we had envisaged in the experiment proposal."

Beyond the contribution of the experiment to a better understanding of the way neutrinos behave, the development of new technologies is also part of the legacy of OPERA. The collaboration was the first to develop fully automated, high-speed readout technologies with sub-micrometric accuracy, which pioneered the large-scale use of the so-called nuclear emulsion films to record particle tracks.

Nuclear emulsion technology finds applications in a wide range of other scientific areas from dark matter search to volcano and glacier investigation. It is also applied to optimise the hadron therapy for cancer treatment and was recently used to map out the interior of the Great Pyramid, one of the oldest and largest monuments on Earth, built during the dynasty of the pharaoh Khufu, also known as Cheops.

+ CERN Open Data Portal

"Final Results of the OPERA Experiment on Tau Neutrino Appearance in the CNGS Neutrino Beam," N. Agafonova et al. (OPERA Collaboration), 2018 May 22, Physical Review Letters


Related Links
CERN Open Data Portal
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Improved Hubble yardstick gives fresh evidence for new physics in the universe
Baltimore MD (SPX) Feb 26, 2018
Astronomers have used NASA's Hubble Space Telescope to make the most precise measurements of the expansion rate of the universe since it was first calculated nearly a century ago. Intriguingly, the results are forcing astronomers to consider that they may be seeing evidence of something unexpected at work in the universe. That's because the latest Hubble finding confirms a nagging discrepancy showing the universe to be expanding faster now than was expected from its trajectory seen shortly after t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US spacewalkers swap, check coolers 'Leaky' and 'Frosty'

NASA sends new research on Orbital ATK mission to Space Station

Science Launching to Space Station Looks Forward and Back

UAE Astronaut to Fly to ISS Instead of US Businessman - Source

STELLAR CHEMISTRY
US indirectly confirms existence of Russia's hypersonic weapons

RL10 engine to power ULA's new Vulcan Centaur Upper Stage

NASA's emerging microgap cooling to be tested aboard New Shepard

TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

STELLAR CHEMISTRY
NASA engineers teach Mars rover Curiosity to drill again

NASA's Curiosity Rover Aims to Get Its Rhythm Back

Mars Society launches Kickstarter to create MarsVR Crew Training Program

Sierra Nevada Corporation Hardware on NASA's Mars InSight Mission

STELLAR CHEMISTRY
Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

Space technologies to protect Shaolin heritage

STELLAR CHEMISTRY
Australian Space Agency Lost In Canberra

In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

China's communication satellites occupy niche in world market

STELLAR CHEMISTRY
Space Situational Awareness is Space Battle Management

Space Traffic Control

Keep the light off: A material with improved mechanical performance in the dark

Your body is transparentized in a virtual environment

STELLAR CHEMISTRY
Amateur astronomer's data helps scientists discover a new exoplanet

Extrasolar asteroid has been orbiting sun for over 4 billion years

Planet hunter snaps test image on Lunar flyby on route to final orbit

Orbital variations can trigger 'snowball states' on exoplanets

STELLAR CHEMISTRY
Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon

Jupiter: A New Perspective

Old Data Reveal New Evidence of Europa Plumes

New views of Jupiter" showcases swirling clouds on giant planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.