24/7 Space News
CHIP TECH
Novel 'quantum refrigerator' is great at erasing quantum computer's chalkboard
illustration only
Novel 'quantum refrigerator' is great at erasing quantum computer's chalkboard
by Chad Boutin for NIST News
Washington DC (SPX) Jan 10, 2025

If you'd like to solve a math problem on a good old-fashioned chalkboard, you want the board clean and free of any previous markings so that you have space to work. Quantum computers have a similar need for a clean workspace, and a team including scientists at the National Institute of Standards and Technology (NIST) has found an innovative and effective way to create and maintain it.

The research effort, a collaboration with physicists at Sweden's Chalmers University of Technology, could address one of the main issues confronting quantum computer designers: the need to keep the bits in a superconducting quantum processor free of errors and ready to perform calculations whenever necessary. These "qubits" are notoriously sensitive to heat and radiation, which can spoil their calculations just as stray chalk marks might make the numeral 1 look like a 7.

Erasing these qubits after a calculation involves cooling them to a fraction of a degree above absolute zero and then keeping them there. The team's method is not only more effective than other state-of-the-art methods for erasing the qubit chalkboard because of the lower temperatures it achieves, but it also achieves them in a novel way - powering the eraser using heat flowing between two parts of the refrigerator that keeps the computer cold. This approach could prove itself useful in other ways.

"The technique in this paper could benefit quantum computers," said the team's Nicole Yunger Halpern, a physicist at NIST and the University of Maryland's Joint Center for Quantum Information and Computer Science (QuICS). "It could address one of the problems in quantum computer design, and it also shows that we can siphon heat from one part of the computer's refrigerator and convert the heat into work. It could introduce technological capabilities we haven't even thought of yet."

The team's proof-of-principle demonstration of the method appears [Jan. 9, 2025] in the journal Nature Physics.

Although quantum computers are far from reaching maturity, they remain the object of intense research because they offer the potential to perform certain tasks that conventional computers cannot do easily, including simulating complex molecular structures that are important in drug design. These projected capabilities derive from a difference between qubits and the bits in a conventional computer: While a conventional bit can exist in two states, 1 or 0, a qubit can have both values simultaneously, nominally allowing a quantum computer to sift through vast numbers of potential solutions at once.

A promising way to make qubits is to build them from superconducting circuits, which are the type the team used in its study. Superconducting qubits bring advantages including tunability: Experimentalists can change the properties of the qubits as desired. However, qubits - even those that superconduct - can develop errors very quickly, which can ruin calculations.

Erasing a superconducting qubit means resetting it to its lowest energy state, which has proved to be tricky. An effective way to reset the qubit would be to make it as cold as possible, down in the tens of millikelvins (mK), or thousandths of a degree above absolute zero. Until now, the best reset methods have brought qubits to a range of 40-49 mK. While those numbers might sound good, they aren't good enough, said co-author and quantum physicist Aamir Ali of Chalmers University of Technology, where the team's experimental work was conducted, supervised by principal investigator Simone Gasparinetti.

"In a quantum computer, initial errors can compound as the calculation proceeds," Ali said. "The more you can get rid of them at the outset, the more effort you will save later."

The team's method can cool the qubit to 22 mK. The improvement would erase the board more completely, reducing the likelihood of initial errors causing trouble down the line.

"If you didn't cool the qubit to that low a temperature, you wouldn't be able to erase the board as thoroughly," Yunger Halpern said.

The team has achieved these performance numbers using a "quantum refrigeration" technique that has never been harnessed in a practical machine before. A refrigerator cools objects by using some sort of energy to draw heat away from the fridge's interior. In a conventional kitchen fridge, the energy source is electricity, but the quantum refrigerator would use heat from elsewhere in the computer to do the job.

The team's fridge uses two other quantum bits as its components. One qubit, which would be connected to a warmer part of the computer, would serve as the energy supply. The second quantum bit would serve as a heat sink into which the computational qubit's undesired extra heat could flow. In an actual quantum computer, if the computational qubit - the chalkboard - got too warm, the fridge's first qubit would pump heat from the computational qubit into the heat sink, which would carry the heat away, returning the computational qubit to nearly its ground state and erasing the board.

The process works autonomously, requiring minimal external control or additional resources to maintain the computational qubit's ability to calculate.

"We think this approach will pave the way for more reliable quantum computing," Ali said. "It's hard to manage errors in quantum computers right now. Beginning closer to the ground state will compound into fewer errors you'd need to correct down the line, reducing errors before they occur."

Research Report:Thermally driven quantum refrigerator autonomously resets a superconducting qubit.

Related Links
Chalmers University of Technology
National Institute of Standards and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Smarter memory next-generation RAM with reduced energy consumption
Osaka, Japan (SPX) Jan 10, 2025
Efforts to enhance computing memory systems have led to the development of various advanced memory types, each aiming to address the limitations of traditional random access memory (RAM). Magnetoresistive RAM (MRAM) is among these innovations, offering non-volatility, high speed, increased storage capacity, and greater durability. Despite these advantages, reducing energy consumption during data writing remains a critical challenge for MRAM technologies. A recent study published in Advanced Scienc ... read more

CHIP TECH
Achieving High Precision for In-Orbit Instrument Calibration

Hexagon to acquire Septentrio driving advancements in mission-critical navigation and autonomy

ISS crew prepares for spacewalks and advances scientific research

NSF and ISS Lab allocate funding for space research projects

CHIP TECH
Stratolaunch Awarded 247M by Missile Defense Agency for Hypersonic Flight Testing

Rocket Lab to Provide Hypersonic Test Launches for Department of Defense

Westinghouse Awarded NASA DOE Contract for Space Microreactor Development

SpaceX launches 21 Starlinks using 1st-stage on it's 25th mission; launches NRO spysat from Vandenberg

CHIP TECH
NASA eyes SpaceX, Blue Origin to cut Mars rock retrieval costs

January's Night Sky Notes: The Red Planet

Evidence exists for hidden water reservoirs and rare magmas on ancient Mars

University of Houston scientists solving meteorological mysteries on Mars

CHIP TECH
China's human spaceflight program achieves key milestones in 2024

China's space journey continues apace

Shenzhou XIX crew completes successful spacewalk outside Tiangong station

China boosts Lunar and Mars mission capabilities with advanced Long March rockets

CHIP TECH
The Space Economy to Reach $944 Billion by 2033

Siemens launches initiative to support startups with advanced technology

AST SpaceMobile secures long-term spectrum access to advance space-based cellular services

India's space economy to grow nearly 5 times in next decade

CHIP TECH
New filter captures and recycles aluminum from manufacturing waste

Study uncovers gold's journey from Earth's mantle to surface

Mexico hails $5 bn Amazon investment in face of Trump threats

Revealing new insights into single-atom metal alloy properties

CHIP TECH
Dormancy as a survival strategy for life's origins

SETI Forward celebrates the future of cosmic exploration

An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

CHIP TECH
Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Jovian vortex hunter catalog reveals stunning insights into Jupiter's atmosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.