. | . |
Northrop Grumman's next generation digital antenna passes key milestone by Staff Writers Linthicum MD (SPX) Oct 14, 2020
Northrop Grumman is moving into the design phase of the Air Force Research Laboratory (AFRL) Aether Spy next-generation multifunction radar program after successfully completing the System Requirements Review (SRR). Aether Spy advances multifunction wideband digital Active Electronically Scanned Array (AESA) technology based on the advanced microelectronics created on the DARPA Arrays on Commercial Timescales (ACT) program. It will develop the next generation of integrated circuits that include additional processing and key design features that enable the Department of Defense trusted microelectronics strategy. The advanced devices will be fabricated and integrated into an advanced digital AESA to demonstrate a multifunction system capable of simultaneously performing multiple sensing, communication and electronic warfare functions. "We look forward to demonstrating how the advanced digital AESA technology enables unmatched system agility that will meet the challenging mission requirements of advanced platforms," said William Phillips, director, multifunction systems, Northrop Grumman. "The advanced integrated circuits, digital AESA architecture and multifunction software developed on Aether Spy will become foundational building blocks for the next generation of multifunction radio frequency (RF) systems supporting the future mission needs of the DoD." "This transition of digital AESA technology aligns well with the Air Force's digital engineering initiatives," said Thomas Dalrymple, technical advisor for Sensor Subsystems at the AFRL Sensors Directorate. "Aether Spy will enable significant improvements in surveillance and battle management missions in the future battlespace. The multifunction aspects are enabled by both software and hardware reprogrammability that will ensure this sensor will have operational impact for years to come."
Mesh reflector for shaped radio beams Paris (ESA) Sep 18, 2020 This prototype 2.6-m diameter metal-mesh antenna reflector represents a big step forward for the European space sector: versions can be manufactured to reproduce any surface pattern that antenna designers wish, something that was previously possible only with traditional solid antennas. "This is really a first for Europe," says ESA antenna engineer Jean-Christophe Angevain. "China and the US have also been working hard on similar shaped mesh reflector technology. It is needed so that sufficiently ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |