. 24/7 Space News .
STELLAR CHEMISTRY
Newly discovered fast radio burst challenges current thinking
by Kshitij Aggarwal | Researcher - West Virginia University
Morgantown WV (The Conversation) Jun 10, 2022

FRB190520 came from a small dwarf galaxy 3 billion light years away, marked by the cross hairs in the larger inset with the exact location of the FRB source in the circle in the smaller image. Niu, CH., Aggarwal, K., Li, D. et al., CC BY

A newly discovered fast radio burst has some unique properties that are simultaneously giving astronomers important clues into what may cause these mysterious astronomical phenomena while also calling into question one of the few things scientists thought they knew about these powerful flares, as my colleagues and I describe in a new study in Nature on June 8, 2022.

Fast radio bursts, or FRBs, are extremely bright pulses of radio waves that come from faraway galaxies. They release as much energy in a millisecond as the Sun does over many days. Researchers here at West Virginia University detected the first FRB back in 2007. In the past 15 years, astronomers have detected around 800 FRBs, with more being discovered every day.

When a telescope captures an FRB, one of the most important features researchers look at is something called dispersion. Dispersion is basically a measure of how stretched out an FRB is when it reaches Earth.

The plasma that lies between stars and galaxies causes all light - including radio waves - to slow down, but lower frequencies feel this effect more strongly and slow down more than higher frequencies. FRBs contain a range of frequencies, so the higher frequency light in the burst hits Earth before the lower frequencies, causing the dispersion. This allows researchers to use dispersion to estimate how far from Earth an FRB originated. The more stretched out an FRB is, the more plasma the signal must have passed through, the farther away the source must be.

Why it matters
The new FRB my colleagues and I discovered is named FRB190520. We found it using the Five-hundred-meter Aperture Spherical Telescope in China. An immediately apparent interesting thing about FRB190520 was that it is one of the only 24 repeating FRBs and repeats much more frequently than others - producing 75 bursts over a span of six months in 2020.

Our team then used the Very Large Array, a radio telescope in New Mexico, to further study this FRB and successfully pinpointed the location of its source - a dwarf galaxy roughly 3 billion light years from Earth. It was then that we started to realize how truly unique and important this FRB is.

First, we found that there is a persistent, though much fainter, radio signal being emitted by something from the same place that FRB190520 came from. Of the more than 800 FRBs discovered to date, only one other has a similar persistent radio signal.

Second, since we were able to pinpoint that the FRB came from a dwarf galaxy, we were able to determine exactly how far away that galaxy is from Earth. But this result didn't make sense. Much to our surprise, the distance estimate we made using the dispersion of the FRB was 30 billion light years from Earth, a distance 10 times larger than the actual 3 billion light years to the galaxy.

Astronomers have only been able to pinpoint the exact location - and therefore distance from Earth - of 19 other FRB sources. For the rest of the roughly 800 known FRBs, astronomers have to rely on dispersion alone to estimate their distance from Earth. For the other 19 FRBs with known locations, the distances estimated from dispersion are very similar to the real distances to their source galaxies. But this new FRB shows that estimates using dispersion can sometimes be incorrect and throws many assumptions out the window.

What still isn't known
Astronomers in this new field still don't know what exactly produces FRBs, so every new discovery or piece of information is important.

Our new discovery raises specific questions, including whether persistent radio signals are common, what conditions produce them and whether the same phenomenon that produces FRBs is responsible for emitting the persistent radio signal.

And a huge mystery is why the dispersion of FRB190520 was so much greater than it should be. Was it due to something near the FRB? Was it related to the persistent radio source? Does it have to do with the matter in the galaxy where this FRB comes from? All of these questions are unanswered.

What's next
My colleagues are going to focus in on studying FRB190520 using a host of different telescopes around the world. By studying the FRB, its galaxy and the space environment surrounding its source, we are hoping to find answers to many of the mysteries it revealed.

More answers will come from other FRB discoveries in the coming years, too. The more FRBs astronomers catalog, the greater the chances of discovering FRBs with interesting properties that can help complete the puzzle of these fascinating astronomical phenomena.


Related Links
West Virginia University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
An Unexpected Gamma Ray Burst
Rome, Italy (SPX) Jun 09, 2022
An international group led by INAF researchers have confirmed that the gamma-ray burst GRB 200826A, which lasted less than two seconds - typical of short bursts - is associated with the explosion of a massive star, which is typical of long gamma-ray bursts. The study, involving also several universities and research institutes in Italy, is primarily based on data collected with the Large Binocular Telescope in Arizona, USA. The observations made the first ever use of adaptive optics to observe a superno ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Women in space analogues demonstrate more sustainable leadership

Left in the dust: The first golden age of citizen travel to outer space

Dragon Mission on Hold as Astronauts Conduct Eye Exams, Spacesuit Work

NASA Moon Mission Set to Break Record in Navigation Signal Test

STELLAR CHEMISTRY
Astra rocket fails to deliver 2 small satellites after launch, NASA says

Artemis II engine section moves to final assembly

NASA Marshall Team Delivers Tiny, Powerful 'Lunar Flashlight' Propulsion System

UK and US to launch Joint Mission Aboard UK's first Virgin Orbit orbital flight

STELLAR CHEMISTRY
How Perseverance averts collisions and zaps

The Aonia Terra region of Mars in colour

Mars sleeps with one eye open

Three years of Marsquake measurements

STELLAR CHEMISTRY
Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

STELLAR CHEMISTRY
AST SpaceMobile to launch BlueWalker 3 for Direct-to-Cell Phone Connectivity Testing

ESA centre to develop Europe's space economy and promote commercialisation

Solid rocket boosters will support existing ULA customers and Amazon's Project Kuiper

DXC Boosts Connectivity for Space Exploration

STELLAR CHEMISTRY
Isar Aerospace and EXOTRAIL partner on cloud-based simulation software ExoOPSTM

James Webb telescope hit by micrometeoroid: NASA

Smartphone technology provides satellites with increased computing power

Irvine scientists observe effects of heat in materials with atomic resolution

STELLAR CHEMISTRY
New clues suggest how Hot Jupiters form

Colossal collisions linked to solar system science

Abell 2146: Colossal Collisions Linked to Solar System Science

Colossal Collisions Linked to Solar System Science

STELLAR CHEMISTRY
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.