. | . |
New wave of electron research by Staff Writers Tokyo, Japan (SPX) Sep 03, 2021
While studying the behavior of electrons in iron-based superconducting materials, researchers at the University of Tokyo observed a strange signal relating to the way electrons are arranged. The signal implies a new arrangement of electrons the researchers call a nematicity wave, and they hope to collaborate with theoretical physicists to better understand it. The nematicity wave could help researchers understand the way electrons interact with each other in superconductors. A long-standing dream of solid state physicists is to fully understand the phenomenon of superconductivity - essentially electronic conduction without the resistance that creates heat and drains power. It would usher in a whole new world of incredibly efficient or powerful devices and is already being used on Japan's experimental magnetic levitation bullet train. But there is much to explore in this complex topic, and it often surprises researchers with unexpected results and observations. Professor Shik Shin from the Institute for Solid State Physics at the University of Tokyo and his team study the way electrons behave in iron-based superconducting materials, or IBSCs. These materials show a lot of promise as they could work at higher temperatures than some other superconducting materials which is an important concern. They also use less exotic material components so can be easier and cheaper to work with. To activate a sample's superconducting ability, the material needs to be cooled down to several hundreds of degrees below zero. And interesting things happen during this cooling process. "As IBSCs cool down to a certain level, they express a state we call electronic nematicity," said Shin. "This is where the crystal lattice of the material and the electrons within it appear to be arranged differently depending on the angle you look at them, otherwise known as anisotropy. We expect the way electrons are arranged to be tightly coupled to the way the surrounding crystal lattice is arranged. But our recent observation shows something very different and actually quite surprising." Shin and his team used a special technique developed by their group called laser-PEEM (photoemission electron microscopy) to visualize their IBSC sample on the microscopic scale. They expected to see a familiar pattern that repeats every few nanometers (billionths of a meter). And sure enough the crystal lattice did show this pattern. But to their surprise, the team found that the pattern of electrons was repeating every few hundred nanometers instead. This disparity between the electron nematicity wave and the crystalline structure of the IBSC was unexpected, so its implications are still under investigation. But the result could open the door to theoretical and experimental explorations into something fundamental to the phenomenon of superconductivity, and that is the way that electrons form pairs at low temperatures. Knowledge of this process could be crucial to the development of high-temperature superconductivity. So if nematicity waves are related, it is important to know how. "Next, I hope we can work with theoretical physicists to further our understanding of nematicity waves," said Shin. "We also wish to use laser-PEEM to study other related materials such as metal oxides like copper oxide. It may not always be obvious where the applications lie, but working on problems of fundamental physics really fascinates me."
Research Report: "Discovery of mesoscopic nematicity wave in iron-based superconductors"
New quantum algorithm calculates energy difference of an atom, molecule Washington DC (UPI) Sep 2, 2021 Scientists in Japan have developed a new way to measure the energy difference of an atom and a molecule. The new algorithm, described Thursday in the journal Physical Chemistry Chemical Physics, will help scientists study electronic states of atomic or molecular systems. Electronic states refer to the configuration of electrons within a system. Typically, scientists measure the total energies of atomic or molecular systems before and after they've experienced an electronic state change, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |