. 24/7 Space News .
TIME AND SPACE
New wave of electron research
by Staff Writers
Tokyo, Japan (SPX) Sep 03, 2021

A diagram of the experimental setup pioneered by the team.

While studying the behavior of electrons in iron-based superconducting materials, researchers at the University of Tokyo observed a strange signal relating to the way electrons are arranged. The signal implies a new arrangement of electrons the researchers call a nematicity wave, and they hope to collaborate with theoretical physicists to better understand it. The nematicity wave could help researchers understand the way electrons interact with each other in superconductors.

A long-standing dream of solid state physicists is to fully understand the phenomenon of superconductivity - essentially electronic conduction without the resistance that creates heat and drains power.

It would usher in a whole new world of incredibly efficient or powerful devices and is already being used on Japan's experimental magnetic levitation bullet train. But there is much to explore in this complex topic, and it often surprises researchers with unexpected results and observations.

Professor Shik Shin from the Institute for Solid State Physics at the University of Tokyo and his team study the way electrons behave in iron-based superconducting materials, or IBSCs. These materials show a lot of promise as they could work at higher temperatures than some other superconducting materials which is an important concern.

They also use less exotic material components so can be easier and cheaper to work with. To activate a sample's superconducting ability, the material needs to be cooled down to several hundreds of degrees below zero. And interesting things happen during this cooling process.

"As IBSCs cool down to a certain level, they express a state we call electronic nematicity," said Shin.

"This is where the crystal lattice of the material and the electrons within it appear to be arranged differently depending on the angle you look at them, otherwise known as anisotropy. We expect the way electrons are arranged to be tightly coupled to the way the surrounding crystal lattice is arranged. But our recent observation shows something very different and actually quite surprising."

Shin and his team used a special technique developed by their group called laser-PEEM (photoemission electron microscopy) to visualize their IBSC sample on the microscopic scale. They expected to see a familiar pattern that repeats every few nanometers (billionths of a meter). And sure enough the crystal lattice did show this pattern. But to their surprise, the team found that the pattern of electrons was repeating every few hundred nanometers instead.

This disparity between the electron nematicity wave and the crystalline structure of the IBSC was unexpected, so its implications are still under investigation. But the result could open the door to theoretical and experimental explorations into something fundamental to the phenomenon of superconductivity, and that is the way that electrons form pairs at low temperatures. Knowledge of this process could be crucial to the development of high-temperature superconductivity. So if nematicity waves are related, it is important to know how.

"Next, I hope we can work with theoretical physicists to further our understanding of nematicity waves," said Shin. "We also wish to use laser-PEEM to study other related materials such as metal oxides like copper oxide. It may not always be obvious where the applications lie, but working on problems of fundamental physics really fascinates me."

Research Report: "Discovery of mesoscopic nematicity wave in iron-based superconductors"


Related Links
Shin Laboratory at University of Tokyo
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New quantum algorithm calculates energy difference of an atom, molecule
Washington DC (UPI) Sep 2, 2021
Scientists in Japan have developed a new way to measure the energy difference of an atom and a molecule. The new algorithm, described Thursday in the journal Physical Chemistry Chemical Physics, will help scientists study electronic states of atomic or molecular systems. Electronic states refer to the configuration of electrons within a system. Typically, scientists measure the total energies of atomic or molecular systems before and after they've experienced an electronic state change, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New Israeli innovation hub seeks foodtech 'revolutions'

Russian cosmonauts to track air leaks with vibration sensors

Can devices that never wear out come into reality?

Space pens, pencils, and how NASA takes notes in space

TIME AND SPACE
AFRL extends capability for testing solid rocket motors with new equipment

Air Force rescue crews ready in case of SpaceX, Boeing launch malfunctions

SpaceX launches Dragon Cargo mission to ISS

Astra rocket fails after liftoff from Alaska

TIME AND SPACE
NASA thinks Mars rover succeeded in taking rock sample

Mars mission to pause for about 50 days

NASA's Perseverance plans next sample attempt

Mars helicopter sees potential rover road ahead

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
Space science project funding available for UK space projects

Maxar awarded contract to build SXM-10 satellite for SiriusXM

OneWeb confirms another successful launch, accelerating business momentum

Russia's Soyuz Spacecraft Launches 34 New OneWeb Satellites Into Orbit

TIME AND SPACE
Sand is one of our most used resources, but the industry is not sustainable

Researchers biomines vanadium aboard ISS

Twitch video gamers go offline to protest 'hate raids'

Crews at Russian Cosmodrome assemble spacecraft with VR Glasses

TIME AND SPACE
Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.