24/7 Space News
SOLAR SCIENCE
New study identifies mechanism driving the sun's fast wind
This illustration shows NASA's Parker Solar Probe near the sun. Credit: NASA/Johns Hopkins APL/Steve Gribben.
New study identifies mechanism driving the sun's fast wind
by Staff Writers
College Park MD (SPX) Jun 08, 2023

The fastest winds ever recorded on Earth reached more than 200 miles per hour, but even those gusts pale in comparison to the sun's wind.

In a paper published June 7, 2023 in the journal Nature, a team of researchers used data from NASA's Parker Solar Probe to explain how the solar wind is capable of surpassing speeds of 1 million miles per hour. They discovered that the energy released from the magnetic field near the sun's surface is powerful enough to drive the fast solar wind, which is made up of ionized particles-called plasma-that flow outward from the sun.

James Drake, a Distinguished University Professor in the University of Maryland's Department of Physics and Institute for Physical Science and Technology (IPST), co-led this research alongside first author Stuart Bale of UC Berkeley. Drake said scientists have been trying to understand solar wind drivers since the 1950s-and with the world more interconnected than ever, the implications for Earth are significant.

The solar wind forms a giant magnetic bubble, known as the heliosphere, that protects planets in our solar system from a barrage of high-energy cosmic rays that whip around the galaxy. However, the solar wind also carries plasma and part of the sun's magnetic field, which can crash into Earth's magnetosphere and cause disturbances, including geomagnetic storms.

These storms occur when the sun experiences more turbulent activity, including solar flares and enormous expulsions of plasma into space, known as coronal mass ejections. Geomagnetic storms are responsible for spectacular aurora light shows that can be seen near the Earth's poles, but at their most powerful, they can knock out a city's power grid and potentially even disrupt global communications. Such events, while rare, can also be deadly to astronauts in space.

"Winds carry lots of information from the sun to Earth, so understanding the mechanism behind the sun's wind is important for practical reasons on Earth," Drake said. "That's going to affect our ability to understand how the sun releases energy and drives geomagnetic storms, which are a threat to our communication networks."

Previous studies revealed that the sun's magnetic field was somehow driving the solar wind, but researchers didn't know the underlying mechanism. Earlier this year, Drake co-authored a paper which argued that the heating and acceleration of the solar wind is driven by magnetic reconnection-a process that Drake has dedicated his scientific career to studying.

The authors explained that the entire surface of the sun is covered in small "jetlets" of hot plasma that are propelled upward by magnetic reconnection, which occurs when magnetic fields pointing in opposite directions cross-connect. In turn, this triggers the release of massive amounts of energy.

"Two things pointing in opposite directions often wind up annihilating each other, and in this case doing so releases magnetic energy," Drake said. "These explosions that happen on the sun are all driven by that mechanism. It's the annihilation of a magnetic field."

To better understand these processes, the authors of the new Nature paper used data from the Parker Solar Probe to analyze the plasma flowing out of the corona-the outermost and hottest layer of the sun. In April 2021, Parker became the first spacecraft to enter the sun's corona and has been nudging closer to the sun ever since. The data cited in this paper was taken at a distance of 13 solar radii, or roughly 5.6 million miles from the sun.

"When you get very close to the sun, you start seeing stuff that you just can't see from Earth," Drake said. "All the satellites that surround Earth are 210 solar radii from the sun, and now we're down to 13. We're about as close as we're going to get."

Using this new data, the Nature paper authors provided the first characterization of the bursts of magnetic energy that occur in coronal holes, which are openings in the sun's magnetic field as well as the source of the solar wind.

The researchers demonstrated that magnetic reconnection between open and closed magnetic fields-known as interchange connection-is a continuous process, rather than a series of isolated events as previously thought. This led them to conclude that the rate of magnetic energy release, which drives the outward jet of heated plasma, was powerful enough to overcome gravity and produce the sun's fast wind.

By understanding these smaller releases of energy that are constantly occurring on the sun, researchers hope to understand-and possibly even predict-the larger and more dangerous eruptions that launch plasma out into space. In addition to the implications for Earth, findings from this study can be applied to other areas of astronomy as well.

"Winds are produced by objects throughout the universe, so understanding what drives the wind from the sun has broad implications," Drake said. "Winds from stars, for example, play a crucial role in shielding planetary systems from galactic cosmic rays, which can impact habitability."

This would not only aid our understanding of the universe, but possibly also the search for life on other planets.

Research Report:Interchange reconnection as the source of the fast solar wind within coronal holes

Related Links
University of Maryland
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR SCIENCE
Parker Solar Probe flies into the fast solar wind and finds its source
Berkeley CA (SPX) Jun 08, 2023
NASA's Parker Solar Probe (PSP) has flown close enough to the sun to detect the fine structure of the solar wind close to where it is generated at the sun's surface, revealing details that are lost as the wind exits the corona as a uniform blast of charged particles. It's like seeing jets of water emanating from a showerhead through the blast of water hitting you in the face. In a paper to be published this week in the journal Nature, a team of scientists led by Stuart D. Bale, a professor o ... read more

SOLAR SCIENCE
Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

Shenzhou-16 spaceship transports seeds for breeding experiments

SOLAR SCIENCE
Falcon 9 deploys 53 Starlink satellites on SpaceX's 40th launch of the year

China's parachute system makes controllable landing of rocket boosters

SpaceX Dragon cargo ship arrives at International Space Station

Astrobotic and Westinghouse team to power outer space

SOLAR SCIENCE
First Mars livestream: the movie

Artificial photosynthesis for real oxygen

How NASA gives a name to every spot it studies on Mars

Science and sampling attempts at the Onahu Outcrop

SOLAR SCIENCE
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

SOLAR SCIENCE
ESA launches major recruitment drive for 2023

York Space Systems acquires Emergent Space Technologies

CNES, E-Space complete next-generation low earth orbit constellation study

Xona Space Systems certifies Spirent's LEO SatNav constellation simulator

SOLAR SCIENCE
LeoLabs accelerates radar coverage in Europe with commissioning of the Azores Space Radar

Settling the guidelines to cover the entire life cycle of satellites

Neumann Space signs contract with Space Inventor to provide greater access to space

China's launches first plate-shaped satellite

SOLAR SCIENCE
Elusive planets play "hide and seek" with CHEOPS

Planet orbiting 2 stars discovered using new technique

Astronomers observe giant tails of helium escaping Jupiter-like planet

Remains of an extinct world of organisms discovered

SOLAR SCIENCE
Colorful Kuiper Belt puzzle solved by UH researchers

Juice deployments complete: final form for Jupiter

First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.