. 24/7 Space News .
ROCKET SCIENCE
New salt-based propellant proven compatible in dual-mode rocket engines
by Staff Writers
Urbana IL (SPX) Sep 10, 2019

University of Illinois at Urbana-Champaign associate professor Joshua Rovey, left, talks about electric propulsion system testing with AE graduate students Nick Rasmont and Matt Klosterman

For dual-mode rocket engines to be successful, a propellant must function in both combustion and electric propulsion systems. Researchers from the University of Illinois at Urbana-Champaign used a salt-based propellant that had already been proven successful in combustion engines, and demonstrated its compatibility with electrospray thrusters.

"We need a propellant that will work in both modes," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I. "So, we created a propellant that is a mixture of two commercially available salts--hydroxylammonium nitrate and emim ethylsulfate. We have published other research papers showing that salt propellants work in the high-acceleration combustion mode. Now we know that this unique combination of salts will also work in the electric fuel-efficient mode."

With electrospray or colloid propulsion, the thrusters electrostatically accelerate ions and droplets from these liquids. It's a technique that started in the biology/chemistry community, then the propulsion community began looking at it about 20 years ago.

Rovey explained that liquid is fed through a very small diameter needle, or capillary tube. At the tip of the tube, a strong electric field is applied that interacts with the liquid in the tube because the liquid itself is a conductor. The liquid responds to that electric field. Small droplets and ions get pulled out of the liquid--spraying them out of the tube or needle.

In this study, in addition to showing that the propellant could be sprayed, Rovey said they were interested in learning what kinds of chemical species come out in the plume. "Because no one has ever tried this type of propellant before, we expected to see species that no one else has ever seen before and, in fact, we did."

Rovey said they also saw a new swapping of the constituents that make up the two different salts.

"We saw some of the hydroxylammonium nitrate salt bonding with the emim ethyl sulfate salt. The two are mixed together inside the propellant, and are constantly bonding with each other and then detaching.

"There's a chaotic nature to the system and it was unclear how those interactions within the liquid itself would propagate and show up in the spray. There are no chemical reactions happening. It's just that we start with A and B separately and when they come out in the spray, A and B are bonded together," he said.

Rovey said these findings shed a lot of light on what's happening in these mixtures of salts that are possible propellants for electrosprays. But it also opens doors to a lot of other questions that will lead to fundamental studies that try to understand the interactions within these propellants and how that translates into what comes out in the spray itself.

Research Report: "Hydroxylammonium Nitrate Species in a Monopropellant Electrospray Plume"


Related Links
University of Illinois College of Engineering
Rocket Science News at Space-Travel.Com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROCKET SCIENCE
Study tests performance of electric solid propellant
Urbana IL (SPX) Sep 04, 2019
Electric solid propellants are being explored for use in dual-mode rocket engines because they aren't susceptible to ignite from a spark or flame and can be turned on and off electrically. Researchers from the University of Illinois at Urbana-Champaign, Missouri University of Science and Technology, and NASA conducted experiments to understand the behavior of a high-performance electric propellant compared with a traditional propellant. "Electric solid propellants have been studied as chemic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
UAE Wants to Train More Astronauts for Arab World - Emirati Official

Taking the next giant leaps

Malaysia Interested in Having Access to Russian Space Tech, Prime Minister Says

Voice-command ovens, robots for pets on show at Berlin's IFA tech fair

ROCKET SCIENCE
Putin reveals he offered to sell Trump Russia's hypersonic missiles

Russia Launches Rokot Space Rocket to Orbit Military Satellite

Russian Space Agency to Test Modernized Fregat Upper Stage During Launch of Meteor Satellite in 2020

Trump says US 'not involved' in Iranian rocket failure

ROCKET SCIENCE
'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

NASA engineers attach Mars Helicopter to Mars 2020 rover

ESA Chief says discussed ExoMars 2020 launch with Roscosmos

ROCKET SCIENCE
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

ROCKET SCIENCE
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

ROCKET SCIENCE
Shaken but not stirred: Konnect satellite completes vibration tests

Seeking moments of disorder

Defrosting surfaces in seconds

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

ROCKET SCIENCE
Planetary collisions can drop the internal pressures in planets

How to Spin a Disk Around Young Protostars

Potassium Detected in an Exoplanet Atmosphere

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

ROCKET SCIENCE
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.