. | . |
New results challenge leading theory in physics by Staff Writers Zurich, Switzerland (SPX) Mar 24, 2021
When so-called beauty quarks are produced during the collision of high-energy proton beams in the Large Hadron Collider - the particle accelerator at CERN in Geneva - they decay almost immediately on the spot. Researchers of the Large Hadron Collider beauty experiment (LHCb) reconstruct the properties of the composite particles based on their decay products. According to the established laws of particle physics - the so-called Standard Model - it is expected that beauty quarks decay with the same probability into a final state with electrons and muons, the much heavier siblings of electrons. However, since 2014 measurements at the LHC suggest that this "lepton universality" may be violated in some decays. In these decays, the production ratio of the two types of particles is different from the theoretical prediction of one. Members of the group led by Nicola Serra, professor at the Department of Physics at the University of Zurich (UZH), are part of the small research team that worked directly on the measurement. In the newest LHCb analysis, the ratio of decay products containing electrons and muons was determined with much better precision compared to previous measurements, using all the data collected by the LHCb detector so far. The result indicates evidence for a deviation from the ratio of one - and hence a breaking of the "lepton universality" in beauty quark decays with a probability of around 0,1% that the data is compatible with the theoretical prediction. If confirmed, this violation would imply physics beyond the Standard Model such as a new fundamental force in addition to the four fundamental ones: gravity, electromagnetism, weak nuclear interactions responsible for radioactivity and strong nuclear forces that hold matter together. "The Standard Model has reigned supreme for decades. Our job as experimentalists is to test it more and more precisely and see if it can survive the increased scrutiny", says UZH senior researcher Patrick Owen, who played a leading role in the analysis. In particle physics, observations become true discoveries if the probability of error, taking into account all known errors, is less than one in three million or 0,00003%, which adds caution to researcher's excitement. "So, it is too early to draw a final conclusion. However, this deviation agrees with a pattern of anomalies which have manifested themselves over the last decade", says Nicola Serra. "Fortunately, the LHCb collaboration is well placed to clarify the potential existence of new physics effects in these decays. We just need many more related measurements in the future", he concludes. The result was presented this week for the first time at the Moriond conference on electroweak interactions and unified theories, and at an online seminar at CERN, the European Organization for Nuclear Research in Geneva.
The Large Hadron Collider beauty experiment (LHCb) Research groups from the UZH and the EPFL are members of the LHCb collaboration since 1999. They have made important contributions to the design and construction of the LHCb detector and are involved in its upgrades. These will be key to collect the needed statistics to find out whether the anomalies observed in beauty quark decays are indeed real. Since the start of data taking in 2009 the UZH group of Nicola Serra has played a leading role in measurements of decays of particles containing beauty quarks.
Artificial "molecules" open door to ultrafast polaritonic devices Moscow, Russia (SPX) Mar 02, 2021 Researchers from Skoltech and the University of Cambridge have shown that polaritons, the quirky particles that may end up running the quantum supercomputers of the future, can form structures behaving like molecules - and these "artificial molecules" can potentially be engineered on demand. The paper outlining these results was published in the journal Physical Review B Letters. Polaritons are quantum particles that consist of a photon and an exciton, another quasiparticle, marrying light and mat ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |