. | . |
New research provides evidence of strong early magnetic field around Earth by Staff Writers Rochester NY (SPX) Jan 22, 2020
Deep within Earth, swirling liquid iron generates our planet's protective magnetic field. This magnetic field is invisible but is vital for life on Earth's surface: it shields the planet from harmful solar wind and cosmic rays from the sun. Given the importance of the magnetic field, scientists have been trying to figure out how the field has changed throughout Earth's history. That knowledge can provide clues to understanding the future evolution of Earth, as well as the evolution of other planets in the solar system. New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed. The research, published in the journal PNAS, will help scientists draw conclusions about the sustainability of Earth's magnetic shield and whether or not there are other planets in the solar system with the conditions necessary to harbor life. "This research is telling us something about the formation of a habitable planet," says John Tarduno, the William R. Kenan, Jr., Professor of Earth and Environmental Sciences and Dean of Research for Arts, Sciences, and Engineering at Rochester. "One of the questions we want to answer is why Earth evolved as it did and this gives us even more evidence that the magnetic shielding was recorded very early on the planet."
Earth's Magnetic Field Today Because of the location and extreme temperatures of materials in the core, scientists aren't able to directly measure the magnetic field. Fortunately, minerals that rise to Earth's surface contain tiny magnetic particles that lock in the direction and intensity of the magnetic field at the time the minerals cool from their molten state. Using new paleomagnetic, electron microscope, geochemical, and paleointensity data, the researchers dated and analyzed zircon crystals - the oldest known terrestrial materials - collected from sites in Australia. The zircons, which are about two-tenths of a millimeter, contain even smaller magnetic particles that lock in the magnetization of the earth at the time the zircons were formed.
Earth's Magnetic Field 4 Billion Years Ago While the researchers initially believed Earth's early magnetic field had a weak intensity, the new zircon data suggests a stronger field. But, because the inner core had not yet formed, the strong field that originally developed 4 billion years ago must have been powered by a different mechanism. "We think that mechanism is chemical precipitation of magnesium oxide within Earth," Tarduno says. The magnesium oxide was likely dissolved by extreme heat related to the giant impact that formed Earth's moon. As the inside of Earth cooled, magnesium oxide could precipitate out, driving convection and the geodynamo. The researchers believe inner Earth eventually exhausted the magnesium oxide source to the point that the magnetic field almost completely collapsed 565 million years ago. But the formation of the inner core provided a new source to power the geodynamo and the planetary magnetic shield Earth has today.
A Magnetic Field On Mars A leading theory, for instance, is that Mars, like Earth, had a magnetic field early on in its history. However, on Mars, the field collapsed and, unlike Earth, Mars did not generate a new one. "Once Mars lost its magnetic shielding, it then lost its water," Tarduno says. "But we still don't know why the magnetic shielding collapsed. Early magnetic shielding is really important, but we're also interested in the sustainability of a magnetic field. This study gives us more data in trying to figure out the set of processes that maintain the magnetic shield on Earth."
Acoustic communication first emerged nearly 200 million years ago Washington DC (UPI) Jan 17, 2020 For the first time, scientists took acoustic communication back to its evolutionary roots. Researchers followed acoustic communication's phylogenic path back some 200 million years through evolutionary history. Scientists began by plotting the relationships among some 1,800 species of tetrapods, including birds, frogs, crocodilians and mammals on a giant evolutionary tree. Next, they surveyed the scientific literature for data on the presence of acoustic communication within each plotted specie ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |