. | . |
New quasi-particle discovered: The Pi-ton by Staff Writers Vienna, Austria (SPX) Feb 05, 2020
In physics, there are very different types of particles: Elementary particles are the fundamental building blocks of matter. Other particles, such as atoms, are bound states consisting of several smaller constituents. And then there are so-called "quasi-particles" - excitations in a system that consists of many particles, which in many ways behave just like a particle themselves. Such a quasiparticle has now been discovered in computer simulations at TU Wien (Vienna) and named pi-ton. It consists of two electrons and two holes. The new particle is presented in the journal "Physical Review Letters", the article also describes how the pi-ton can be detected experimentally.
A hole is almost a particle Instead of describing the motion of constantly moving electrons, it is easier to study the motion of the hole. If the electrons move to the right, the hole moves to the left - and this movement follows certain physical rules, just like the movement of an ordinary particle. However, unlike an electron, which can also be observed outside the crystal, the hole only exists in conjunction with the other particles. In this case we speak of a "quasi-particle". "However, the dividing line between particles and quasi-particles is not as clear as one might think," says Karsten Held. "Strictly speaking, even ordinary particles can only be understood in the context of their environment. Even in a vacuum, particle-hole excitations occur constantly, albeit for a very short time. Without them, the mass of an electron for example would be completely different. In this sense, even in experiments with ordinary electrons, what we see is really a quasi-particle electron."
More complicated bonds "We actually wanted to investigate such excitons", report Dr. Anna Kauch and Dr. Petra Pudleiner, the first authors of the paper. "We developed computer simulations to calculate quantum physical effects in solids." But soon Anna Kauch, Petra Pudleiner and their colleague Katharina Astleithner realized that they had come across something totally different in their calculations - a completely new type of quasi-particle. It consists of two electrons and two holes that couple to the outside world via photons. The team gave this previously unknown object the name pi-ton". "The name pi-ton comes from the fact that the two electrons and two holes are held together by charge density fluctuations or spin fluctuations that always reverse their character by 180 degrees from one lattice point of the crystal to the next - i.e. by an angle of pi, measured in radians," explains Anna Kauch. "This constant change from plus to minus can perhaps be imagined like a change from black to white on a chessboard," says Petra Pudleiner. The pi-ton is created spontaneously by absorbing a photon. When it disappears, a photon is emitted again.
The particle that came out of the computer Therefore, it should definitely be detectable in a variety of different materials. ", Karsten Held is convinced. "Some experimental data obtained with the material samarium titanate already seem to point to the pi-ton. Additional experiments with photons and neutrons should soon provide clarity." Even though we are constantly surrounded by countless quasiparticles - the discovery of a new quasiparticle species is something very special. Besides the exciton, there is now also the pi-ton. In any case, this contributes to a better understanding of the coupling between light and solids, a topic that plays an important role not only in basic research but also in many technical applications - from semiconductor technology to photovoltaics.
Artificial intelligence 'sees' quantum advantages Moscow, Russia (SPX) Feb 05, 2020 Russian researchers from the Moscow Institute of Physics and Technology, Valiev Institute of Physics and Technology, and ITMO University have created a neural network that learned to predict the behavior of a quantum system by "looking" at its network structure. The neural network autonomously finds solutions that are well-adapted toward quantum advantage demonstrations. This will aid researchers in developing new efficient quantum computers. The findings are reported in the New Journal of Physics. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |