. | . |
New model proposes jets go superluminal in gamma-ray bursts by Staff Writers Houghton MI (SPX) Sep 27, 2019
Astrophysicists Jon Hakkila of the College of Charleston and Robert Nemiroff of the Michigan Technological University have published research indicating that blasts that create gamma-ray bursts may actually exceed the speed of light in surrounding gas clouds, but do so without violating Einstein's theory of relativity. Hakkila and Nemiroff propose that such superluminal jets could create the time-reversibility seen in gamma-ray burst light curves. These proposed jets, however, do not violate the Einstein's relativity because they only move faster than light does through the jet medium, not faster than light through vacuum. Hakkila says that a good way to visualize this superluminal motion is to imagine someone on one side of a pond skipping a stone across the water in your direction. The frequently-hopping stone moves through the air between hops faster than the waves it generates move through water. Hakkila says you would see waves created by each skip of the approaching stone in reverse order, with waves from the most recent skip arriving first and those from the initial skip arriving last. This superluminal blast explanation retains many characteristics of accepted gamma-ray burst jet models, Hakkila says. Nemiroff adds, however, that their proposed scenario involves Cherenkov radiation, a type of light created by superluminal motion that was not previously thought to be important in generating the light curves of gamma-ray bursts. "Standard gamma-ray burst models have neglected time-reversible light curve properties," Hakkila says. "Superluminal jet motion accounts for these properties while retaining a great many standard model features."
Research Report: "Time-Reversed Gamma-Ray Burst Light Curve Characteristics as Transitions between Subluminal and Superluminal Motion"
Pulsating gamma rays from neutron star rotating 707 times a second Hannover, Germany (SPX) Sep 23, 2019 An international research team led by the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Hannover has discovered that the radio pulsar J0952-0607 also emits pulsed gamma radiation. J0952-0607 spins 707 times in one second and is 2nd in the list of rapidly rotating neutron stars. By analyzing about 8.5 years worth of data from NASA's Fermi Gamma-ray Space Telescope, LOFAR radio observations from the past two years, observations from two large optical telescopes, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |