. 24/7 Space News .
STELLAR CHEMISTRY
New mechanism of radio emission in neutron stars revealed
by Staff Writers
Saint Petersburg, Russia (SPX) Apr 25, 2018

illustration only

Young scientists from ITMO University have explained how neutron stars generate intense directed radio emission. They developed a model based on the transitions of particles between gravitational states, i.e. quantum states in gravitational field. The researchers were the first to describe such states for electrons on the surface of neutron stars. Physical parameters obtained with the developed model are consistent with real experimental observations. The results are published in The Astrophysical Journal.

Neutron stars are some of the most amazing astronomical objects as their density is second only to black holes. Inside neutron stars, there are no individual atoms and nuclei. Moreover, due to such a high density, neutron stars have tremendous gravity, which results in unique physical properties such as directed radio emission, which played a major part in neutron stars discovery.

On Earth, the radiation from neutron stars was first observed in 1967 in the form of periodic signals, initially causing scientists to suggest that it may have come from an extraterrestrial civilization. However, researchers soon learned that the radiation of neutron stars was natural in origin and did not carry any special information.

Its strict periodicity turned out to be the result of an unusual propagation path. Neutron stars emit radio waves as a narrow beam that "shines" through space like a beacon while the star is rotating. Therefore, the radio emission of neutron stars is observed as periodic pulsations.

One of the most puzzling questions in the physics of neutron stars is the mechanism that generates such directed radio emission. Over the past fifty years, scientists could not find a clear answer to this question. Recently, a team of theoretical physicists from ITMO University described how pulsars generate radio emission. They developed a theoretical model based on the similar states observed in electrons in semiconductor nanocrystals and those in gravitational fields.

Scientists examined how electrons move near the surface of a neutron star. Electrons cannot go through the surface due to the high density of matter inside the star. Simultaneously, electrons are attracted to the surface of the star by strong gravity. As a result, particles are "trapped" in a thin layer just above the surface of the star.

According to the laws of quantum mechanics, the energy of the trapped electrons can only take discrete values. If the electrons fall onto the surface of the neutron star, they pass over the discrete gravity states, emitting energy in the form of radio wave beams.

"Environment on the surface of a neutron star is very similar to the one that exists within a laser", explains Nikita Teplyakov, researcher at the Laboratory of Modeling and Design of Nanostructures at ITMO University.

"There exists the so-called population inversion, meaning that the environment is rich with high-energy particles. As they move to the lower energy levels, they emit radiation that causes nearby particles to reduce their energy as well. We evaluated the frequency of electron transitions between gravitational conditions on a neutron star and saw that they correspond to the radio band. We never even suspected that this was something no one had done before, but it turned out that we were, indeed, the first."

According to the researchers, this study began in a quantum mechanics class as they worked on a task.

"The task was pretty trivial: we had to describe the gravitational state on the surface of Earth. But on Earth, gravity is not very strong, so no interesting effects emerge; it is almost impossible to observe gravity conditions here. Therefore our professor Yuri Rozhdestvensky suggested we do the same task for a neutron star with a strong gravity. When we realized that we stumbled upon something interesting, we began developing a model. It turned out that we obtained a quite accurate description of the experimental data", says Tatiana Vovk, a member of the Laboratory of Modeling and Design of Nanostructures.

Authors note that despite its revelations, this work employs simple and well-known principles of physics. Namely, the radio emission amplification mechanism for neutron stars is similar to one of the conventional lasers. In the future, scientists plan to use their model for a study of gravitation states of other massive objects in the Universe.

Research Report: Laser Emission from Gravitational States on Isolated Neutron Stars. Nikita V. Tepliakov, Tatiana A. Vovk, Ivan D. Rukhlenko, and Yuri V. Rozhdestvensky. The Astrophysical Journal, Apr. 11, 2018.


Related Links
ITMO University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Uncovering the secret law of the evolution of galaxy clusters
Osaka, Japan (SPX) Apr 25, 2018
As science enthusiasts around the world bid farewell to legendary cosmologist Stephen Hawking, researchers continue to make important discoveries about the evolution of galaxy clusters that capture the imagination. Now, an international collaboration between Yutaka Fujita at Osaka University and researchers from Taiwan, Italy, Japan, and the United States found a new fundamental law that stipulates the evolution of galaxy clusters. They recently reported the study in The Astrophysical Journal. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
2020 Decadal Survey Missions: At a Glance

NASA upgrades Space Station emergency communications ground stations

Russia develops space sauna and washing machine

'Jedi' calls on Europe to find innovation force

STELLAR CHEMISTRY
China developing reusable space rocket

Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

Vostochny Cosmodrome preps for first tourist visit

STELLAR CHEMISTRY
Bernese Mars camera CaSSIS sends first colour images from Mars

A Yellowstone guide to life on Mars

ESA and NASA to investigate bringing martian soil to Earth

Opportuity Mars rover looking for a path of less resistance

STELLAR CHEMISTRY
Astronauts eye more cooperation on China's space station

China outlines roadmap for deep space exploration

Across China: Rocket launch brings back fortune to locals

China to launch advanced space cargo transport aircraft in 2019

STELLAR CHEMISTRY
UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

STELLAR CHEMISTRY
3-D printed food could change how we eat

India recalls GSAT-11 satellite from launch site for more tests

NASA seeks research proposals for space technologies to flight test

Engineers get a grip on slippery surfactants

STELLAR CHEMISTRY
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Researchers simulate conditions inside 'super-Earths'

Droids beat astronomers in predicting survivability of exoplanets

STELLAR CHEMISTRY
What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.