. | . |
New material design tops carbon-capture from wet flue gases by Staff Writers Lausanne, Switzerland (SPX) Dec 12, 2019
Generally speaking, "flue gas" refers to any gas coming out of a pipe, exhaust, chimney etc as a product of combustion in a fireplace, oven, furnace, boiler, or steam generator. But the term is more commonly used to describe the exhaust vapors exiting the flues of factories and powerplants. Iconic though they may be, these flue gases contain significant amounts of carbon dioxide (CO2), which is a major greenhouse gas contributing to global warming. One way to ameliorate the polluting impact of flue gases is to take the CO2 out of them and store it in geological formations or recycle it; there is, in fact, an enormous amount of research trying to find novel materials that can capture CO2 from these flue gasses. Metal Organic Frame works (MOFs) are among the most promising of these materials, but most of these materials require drying the "wet" flue gas first, which is technically feasible but also very expensive - and thus less likely to be implemented commercially. In a strange twist of nature - or design chemistry - materials that are good at capturing CO2 have proven to be even better at capturing water, which renders them of little use with wet flue gasses. It seems that in most of these materials, CO2 and water compete for the same adsorption sites - the areas in the material's structure that actually capture the target molecule. Now, a team of scientists led by Berend Smit at EPFL Valais Wallis have designed a new material that prevents this competition, is not affected by water, and can capture CO2 out of wet flue gases more efficiently than even commercial materials. In what Smit calls "a breakthrough for computational materials design", the scientists used an out-of-the-box approach to overcome the difficulties presented with material design: the tools of drug discovery. When pharmaceutical companies search for a new drug candidate, they first test millions of molecules to see which ones will bind to a target protein that is related to the disease in question. The ones that do are then compared to determine what structural properties they share in common. A common motif is established, and that forms the basis for designing and synthesizing actual drug molecules. Using this approach, the EPFL scientists computer-generated 325,000 materials whose common motif is the ability to bind CO2. All the materials belong to the family of metal-organic frameworks (MOFs) - popular and versatile materials that Smit's research has been leading the charge on for years. To narrow down the selection, the scientists then looked for common structural motifs among the MOFs that can bind CO2 very well but not water. This subclass was then further narrowed down by adding parameters of selectivity and efficiency, until the researchers' MOF-generation algorithm finally settled on 35 materials that show better CO2 capturing ability from wet flue-gas than current materials that are commercially available. "What makes this work stand out is that we were also able to synthesize these materials," says Smit. "That allowed us to work with our colleagues to show that the MOFs actually adsorb CO2 and not water, actually test them for carbon capture, and compare them with existing commercial materials." This part of the study was carried out in collaboration with the University of California Berkeley, the University of Ottawa, Heriot-Watt University and the Universidad de Granada. "The experiments carried out in Berkeley showed that all our predictions were correct," says Smit. "The group in Heriot-Watt showed that our designed materials can capture carbon dioxide from wet flue gasses better than the commercial materials."
Research Report: Data-driven design of metal-organic frameworks for wet flue gas CO2 capture
A sustainable new material for carbon dioxide capture Gothenburg, Sweden (SPX) Dec 10, 2019 In a joint research study from Sweden, scientists from Chalmers University of Technology and Stockholm University have developed a new material for capturing carbon dioxide. The new material offers many benefits - it is sustainable, has a high capture rate, and has low operating costs. The research has been published in the journal ACS Applied Materials and Interfaces. Carbon Capture and Storage (CCS) is a technology that attracts a lot of attention and debate. Large investments and initiatives ar ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |