. 24/7 Space News .
ENERGY TECH
New material can absorb and release enormous amounts of energy
by Staff Writers
Amherst MA (SPX) Feb 03, 2022

The elastic material with embedded magnets whose poles are color-coded red and blue. Orienting the magnets in different directions changes the metamaterial's response.

A team of researchers from the University of Massachusetts Amherst recently announced in the Proceedings of the National Academy of Sciences that they had engineered a new rubber-like solid substance that has surprising qualities. It can absorb and release very large quantities of energy. And it is programmable. Taken together, this new material holds great promise for a very wide array of applications, from enabling robots to have more power without using additional energy, to new helmets and protective materials that can dissipate energy much more quickly.

"Imagine a rubber band," says Alfred Crosby, professor of polymer science and engineering at UMass Amherst and the paper's senior author. "You pull it back, and when you let it go, it flies across the room. Now imagine a super rubber band. When you stretch it past a certain point, you activate extra energy stored in the material. When you let this rubber band go, it flies for a mile."

This hypothetical rubber band is made out of a new metamaterial-a substance engineered to have a property not found in naturally occurring materials-that combines an elastic, rubber-like substance with tiny magnets embedded in it. This new "elasto-magnetic" material takes advantage of a physical property known as a phase shift to greatly amplify the amount of energy the material can release or absorb.

A phase shift occurs when a material moves from one state to another: think of water turning into steam or liquid concrete hardening into a sidewalk. Whenever a material shifts its phase, energy is either released or absorbed. And phase shifts aren't just limited to changes between liquid, solid and gaseous states-a shift can occur from one solid phase to another. A phase shift that releases energy can be harnessed as a power source, but getting enough energy has always been the difficult part.

"To amplify energy release or absorption, you have to engineer a new structure at the molecular or even atomic level," says Crosby. However, this is challenging to do and even more difficult to do in a predictable way. But by using metamaterials, Crosby says that "we have overcome these challenges, and have not only made new materials, but also developed the design algorithms that allow these materials to be programmed with specific responses, making them predictable."

The team has been inspired by some of the lightning-quick responses seen in nature: the snapping-shut of Venus flytraps and trap-jaw ants. "We've taken this to the next level," says Xudong Liang, the paper's lead author, currently a professor at Harbin Institute of Technology, Shenzhen (HITSZ) in China who completed this research while a postdoc at UMass Amherst. "By embedding tiny magnets into the elastic material, we can control the phase transitions of this metamaterial. And because the phase shift is predictable and repeatable, we can engineer the metamaterial to do exactly what we want it to do: either absorbing the energy from a large impact, or releasing great quantities of energy for explosive movement."

This research, which was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office as well as Harbin Institute of Technology, Shenzhen (HITSZ), has applications in any scenario where either high-force impacts or lightning-quick responses are needed.

Research Report: "Phase-transforming metamaterial with magnetic interactions"


Related Links
University of Massachusetts Amherst
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Power at sea: towards high-performance seawater batteries
Busan, South Korea (SPX) Feb 02, 2022
Lithium-ion batteries have taken the world by storm thanks to their remarkable properties. However, the scarcity and high cost of lithium has led researchers to look for alternative types of rechargeable batteries made using more abundant materials, such as sodium. One particularly promising type of sodium-based battery is seawater batteries (SWBs), which use seawater as the cathode. Though SWBs are environmentally benign and naturally firesafe, the development of high-performance anode materials ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
China joins industrial design IP treaty

Astronaut hits 300 days in space, on way to break NASA record

New ISS National Laboratory tool expands visibility of ISS-related educational resources

NASA details plan to deorbit International Space Station in 2031

ENERGY TECH
UCF lands new project to study effect of rain on hypersonic travel

Astra's planned first launch in Florida scrubbed

NASA, Space Station Partners Approve First Axiom Mission Astronauts

Rocket Lab to expand Colorado dootprint with new Space Systems Complex

ENERGY TECH
Helicopters Flying at Mars May Glow at Dusk

China's Mars orbiter sends back selfie video on Lunar New Year eve

Almost on the rove again

Sols 3371-3373: Some Lucky Breaks at the Prow

ENERGY TECH
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

China to improve space debris monitoring: white paper

ENERGY TECH
New Center for Satellite Constellation Interference

ASTRA rebrands as Orion Space Solutions

Boost for space clusters across the UK

Space Foundation Launches Space Commerce Institute

ENERGY TECH
The impacts of impacts

High level of artificial radioactivity on glaciers surprises physicists

Self-healing ice

Nintendo raises profit forecast but cuts Switch sales outlook

ENERGY TECH
Animal genomes: Chromosomes almost unchanged for over 600 million years

Even dying stars can still give birth to planets

What the rise of oxygen on early Earth tells us about life on other planets

Exoplanet has Earth-like layered atmosphere made of titanium gas

ENERGY TECH
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.