. | . |
New 'living material' gloves light up when they touch target chemicals by Brooks Hays Boston (UPI) Feb 16, 2017
Scientists at MIT have crafted wearable sensors out of cell-infused hydrogel film. Researchers used the new "living material" to design gloves and bandages that light up when they come in contact with target chemicals. The hydrogel's watery environment provides nutrients to injected cells, keeping them alive and functioning as designed. "With this design, people can put different types of bacteria in these devices to indicate toxins in the environment, or disease on the skin," Timothy Lu, an associate professor of biological engineering, told MIT News. "We're demonstrating the potential for living materials and devices." Previous scientific breakthroughs have allowed researchers to engineer cells to perform a variety of functions, like lighting up when they come in contact with specific chemical compounds. For Lu and his colleagues, the challenge was to keep programmed cells alive outside of a Petri dish. The new biocompatible hydrogel developed by the team of engineers, a combination of a polymer and water, improves on previous attempts to bring engineered cells outside of the lab. Researchers carved tiny channels through the hydrogel layers using 3D printing and micromolding methods. They then affixed the hydrogel film to a porous layer of rubber, which offered protection without sacrificing access to oxygen. Finally, the engineers injected programmed E. coli cells into the channels before soaking the entire material in a solution of nutrients. "The challenge to making living materials is how to maintain those living cells, to make them viable and functional in the device," Lu said. "They require humidity, nutrients, and some require oxygen. The second challenge is how to prevent them from escaping from the material." Their final material kept the cells alive and active for several days, even as they stretched and folded the material. In a series of tests, researchers injected different engineered cells into separate channels in a hydrogel-elastomer bandage. Each channel glowed green in response to contact with a different chemical compound. Researchers repeated the experiment using a hydrogel-elastomer glove with engineered cells injected into the tiny channels carved into the glove's fingertips. The tips glowed green when the glove wearer picked up cotton balls soaked with the target chemicals. Scientists described their living material breakthrough in the journal PNAS.
Related Links Space Medicine Technology and Systems
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |