. | . |
New insights could help tame speedy ions in fusion plasmas by Staff Writers Fort Lauderdale FL (SPX) Oct 23, 2019
To create a practical fusion energy reactor, researchers need to control particles known as fast ions. These speedy ions, which are electrically charged hydrogen atoms, provide much of the self-heating ability of the reactor as they collide with other ions. But they can also quickly escape the powerful magnetic fields used to confine them and overheat the walls of the containment vessel, causing damage. A team at the DIII-D National Fusion Facility recently took a different approach to studying these difficult-to-measure particles. The research showed promising results that have not only yielded insights into the physics of the particles themselves, but they may also lead to new and reliable ways to monitor and manage how well fast ions are contained in future reactors. "This is really an exciting time to be working on these types of challenges in fusion energy," said DIII-D researcher Kathreen Thome. "The global fusion community is picking up pace on the road to energy output, and every bit of additional insight we can generate into these problems moves us closer to that destination." Part of the research challenge in measuring the fast ions lies in the harsh environment at the heart of a tokamak, a type of fusion reactor. Delicate sensors used in today's research tokamaks would simply be destroyed in future fusion reactors, which will have much higher power. The DIII-D team used a rugged magnetic sensor and high-performance computing to capture and interpret a small wiggle created in the device's magnetic field by these fast particles. This magnetic field fluctuation (Figure 1) provides information on the properties and behavior of the speedy ions and how they interact with plasma waves. The next step for the fusion community will be to use the data generated to expand the capabilities of computer models that interpret the behavior of fast ions based on these wiggles. Once models are made more effective, they could be coupled with the rugged magnetic sensors in future high-power reactors to provide real-time control of the conditions that affect fast ions. If that feedback loop can be established, the fast ions could not only be kept from damaging the tokamak walls, they could be used to heat the plasma more efficiently.
Research Report: Central Ion Cyclotron Emission in the DIII-D Tokamak
New plasma wave accelerator propels electrons to record speeds Washington (UPI) Oct 21, 2019 Scientists have set a new record for electron acceleration using a plasma wave accelerator. The new technology produced electron beams with energies up to 7.8 billion electron volts across an 8-inch-long plasma wave. Particle accelerators are essential to advanced particle physics and the quest to solve the great mysteries of the cosmos. But today's particle accelerators are massive, requiring miles of underground space. They also cost millions of dollars to construct. To advance the fie ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |