The study focuses on the strong force, which generates almost all mass of all visible matter in the universe. A handful of fundamental particles, known as quarks, engaging in intriguing interactions by exchanging gluons, create all composite subatomic particles that eventually form all the visible matter of our universe. QCD, governing strong interactions, allows color-neutral combinations of quarks into subatomic particles generically referred to as hadrons.
Hadrons are usually classified as mesons (one quark and one antiquark) or baryons (three quarks). Over the past decade and a half, a flurry of experimental discoveries has illuminated this previously obscure domain, unveiling a rich spectra of exotic hadrons that defy conventional notions of the strong force and challenging our understanding of subatomic particles.
Among these exotic hadrons are tetraquarks, which are composed of four quarks (more precisely, two quarks and two anti-quarks). They could exist in highly compact forms or as loosely bound molecules of two mesons or something else: the precise structures of them remain a mystery.
In this recent work Prof. Nilmani Mathur and a postdoctoral fellow, Dr. Archana Radhakrishnan, from the Department of Theoretical Physics, TIFR, and Dr. M. Padmanath from IMSc have predicted the existence of a novel tetraquark. This new subatomic particle is composed of a beauty and a charm quarks along with two light anti-quarks, and it belongs to a family of tetraquarks, called Tbc: the beautiful-charming tetraquarks. They have utilized the computational facility of the Indian Lattice Gauge Theory Initiative (ILGTI) to carry out this calculation.
The formation of this particular tetraquark was investigated using the interactions between a bottom and a charm mesons. Utilizing variational techniques across varied lattice spacings and valence light quark masses, this study investigated energy eigenvalues of the interacting meson systems within finite volumes, and arrived at the conclusion on the existence of this tetraquark. Similar to the predicted particle there could be other tetraquarks with the same quark content but with different spin and parity. This prediction arrives at a fortuitous moment, coinciding with the recent discovery of a tetraquark (Tcc) containing two charm quarks and two light antiquarks.
Consequently, there exists a distinct possibility that the newly predicted particle or a related variant could well be discovered using similar experimental methodologies, given that the energy range and luminosity required for their production and detection are becoming increasingly accessible. Furthermore, the binding energy of the predicted particle exceeds that of any discovered tetraquarks and the binding weakens as the mass of the light quark increases, alluding intricate dynamics of strong interactions across diverse quark mass regimes as well as elucidating the intriguing features of strong force in hadron formation particularly those with heavy quarks. This also brings additional motivation to search for heavier exotic subatomic particles in next-generation experiments, which could be utilized in deciphering the strong force and unlocking its full potential.
Research Report:Bound Isoscalar Axial-Vector Tetraquark from Lattice QCD
Related Links
Tata Institute of Fundamental Research
Understanding Time and Space
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |