. 24/7 Space News .
ENERGY TECH
New experiment results bolster potential for self-sustaining fusion
by Staff Writers
Los Alamos NM (SPX) Jan 28, 2022

Los Alamos' Gamma Reaction History (GRH) detector, used in the burning plasma experiment series, measures time-resolved fusion burn and provides important information on fusion experiment performance.

For more than 60 years, scientists have sought to understand and control the process of fusion, a quest to harness the vast amounts of energy released when nuclei in fuel come together. A paper published in the journal Nature describes recent experiments that have achieved a burning plasma state in fusion, helping steer fusion research closer than it has ever been to its ultimate goal: a self-sustaining, controlled reaction.

Los Alamos National Laboratory researchers, including members of the Physics division, contributed essential capabilities in diagnostic science to achieve and analyze the unprecedented results. Their diagnostic advances helped transition fusion research to its current era at the threshold of ignition - the point at which a fusion reaction generates more energy than it receives and can burn on its own.

"These experiments indicate a transition to a different physics regime," said Los Alamos physicist Hermann Geppert-Kleinrath, a member of the team at the National Ignition Facility working on the burning plasma project. "The research described in this paper marks where alpha heating in the reactions outcompeted the loss between radiation and heat conduction. It's an exciting time because we're at the point where continued marginal gains in how we conduct our experiments will lead to exponential improvements."

The laser inertial confinement fusion experiments took place at the National Ignition Facility at Lawrence Livermore National Laboratory in California. Within a specially constructed cavity, a carbon-formed capsule, about one millimeter in diameter, contains both cryogenically frozen deuterium-tritium and the same as gas mixture - the fuel. When the cavity is heated with lasers, an x-ray bath results and warms the capsule until the fuel inside is compressed. The resulting fusion of the deuterium and tritium nuclei releases neutrons and alpha particles; the latter deposit their energy back into the hot spot of the reaction and in so doing contribute to the propagation of the burn. Such an alpha-dominated reaction is sought after as a key element in self-sustaining fusion.

Extreme forces require special capabilities
The forces at work in fusion are extreme. In the experiments described in the Nature paper, the temperature during the fusion reaction is about three times hotter than the center of the sun. The length of the reaction is incredibly short, too, approximately 130 picoseconds - the time it takes light to travel just four centimeters (light travels at 300,000 kilometers per second).

"It's an unbelievably tough physics regime to do measurements on," said Geppert-Kleinrath. "We're essentially creating a miniature sun in the laboratory."

In order to capture meaningful data from that event, Los Alamos researchers contributed several key diagnostic capabilities for the National Ignition Facility, each containing immense technical challenges. Hermann's team is responsible for the gamma reaction history diagnostic, providing bang time (the time of maximum compression and reaction rate - also called stagnation) and burn duration. The gamma reaction history instrument measures reactions with time resolution down to ten picoseconds - a tiny timescale on which light only travels millimeters.

Physicist Verena Geppert-Kleinrath, team leader for advanced imaging at Los Alamos, led the neutron imaging capabilities that provided three-dimensional hot spot shapes for the National Ignition Facility experiments. (Coincidentally, Verena is married to Hermann.) Neutron imaging meant measuring a 70-micron hotspot - equal to the thickness of a human hair - from 30 meters away through an extended aperture with openings only a few microns wide.

"We're very proud that coming from different fields and different groups within physics we have the privilege of being part of this very momentous achievement together," said Verena Geppert-Kleinrath. "Los Alamos' physics teams have been able to provide unique diagnostics to show the markers that we are looking for under challenging conditions."

Improvements make progress toward fusion
Ultimately, the experiments explored the criteria for ignition - how fusion can be generated, and how it can be generated in such a way that it propagates itself, releasing more energy from the fuel than the energy it took to start the reaction courtesy of the lasers. The experiments and the analysis of the results suggested gradual improvements that could keep more energy inside the reaction instead of being lost to radioactivity or heat conduction. For instance, the fuel fill tube's size was identified as a performance limitation through 3D neutron imaging, and future experiments used a specially engineered fill tube that was much smaller.

The four experiments or "shots" represented significant accomplishments in achieving burning plasma. The fourth shot saw more energy created than was lost due to radiation or heat conduction and likely may have achieved propagation had the capsule not disassembled in the implosion. The total energy output, including the laser energy to start the reaction, was still a net negative, but the clear improvement represented a tipping point toward self-sustaining fusion.

The gradual improvements paid off significantly in August 2021, when an experiment at the National Ignition Facility achieved a yield of 1.3 megajoules - an eight-fold increase over the experiments described in the Nature publication. While falling just short of one definition of ignition, the experiment suggests that fusion research has entered a new era, with further gradual improvements perhaps able to achieve ignition and self-sustaining fusion.

"We're right at the cliff of experiments fizzling out versus experiments going into the ignition regime," said Hermann Geppert-Kleinrath. "Once you transition into this regime where alpha heating is dominating, marginal gains in how we do the experiment lead to very large gains in yield."

Research Report: "Burning plasma achieved in inertial fusion"


Related Links
Los Alamos National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Researchers achieve burning plasma regime for first time in lab
Livermore CA (SPX) Jan 27, 2022
After decades of fusion research, a burning plasma state was achieved on November 2020 and February 2021 at Lawrence Livermore National Laboratory's National Ignition Facility (NIF), the world's most energetic laser. Obtaining a burning plasma is a critical step toward self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn to enable high-energy gain. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Caltech names Laurie Leshin Director of JPL

US issues visa to Russian ISS cosmonaut

Beaming with science

SCOUT releases autonomy software to enable safer and less complex space operations

ENERGY TECH
Rocket Lab to provide Venture Class Launch Services for NASA

Skyroot Aerospace to fly its rocket from mobile launch pad in 2022

Astra Awarded VADR Contract by NASA

New tech spurs spaceplane vision: halfway around world in 40 minutes

ENERGY TECH
SwRI scientist helps confirm liquid water beneath Mars south polar cap

Extremely harsh volcanic lake shows how life might have existed on Mars

Sols 3367-3368: The Prow to take another bow

Crater tree rings

ENERGY TECH
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to explore more in space science next five years: White paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

ENERGY TECH
Blue Origin set to acquire Honeybee Robotics

Advances in Space Transportation Systems Transforming Space Coast

EU launches 'game changer' space startup fund

Summit to ignite Europe's bold space ambitions

ENERGY TECH
Space Power to revolutionize satellite power using laser beaming

China releases new-generation spacecraft OS

NASA aims to make observations from space junk collision with Moon

New DAF software factory aims to digitally transform AFRL

ENERGY TECH
Extreme exoplanet has a complex and exotic atmosphere

A planetary dynamical crime scene at 14 Herculis

Scientists are a step closer to finding planets like Earth

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

ENERGY TECH
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.