. 24/7 Space News .
TECH SPACE
New compact hyperspectral system captures 5-D images
by Staff Writers
Washington DC (SPX) Aug 30, 2018

The new hyperspectral imager contains two cameras and measures just 425 by 200 millimeters. With further miniaturization it could be incorporated into smartphones for personal use.

Researchers have developed a compact imaging system that can measure the shape and light-reflection properties of objects with high speed and accuracy. This 5D hyperspectral imaging system - so-called because it captures multiple wavelengths of light plus spatial coordinates as a function of time - could benefit a variety of applications including optical-based sorting of products and identifying people in secure areas of airports. With further miniaturization, the imager could enable smartphone-based inspection of fruit ripeness, or personal medical monitoring.

What's more, "because our imaging system doesn't require contact with the object, it can be used to record historically valuable artifacts or artwork," said research team leader Stefan Heist of Friedrich Schiller University Jena and Fraunhofer Institute for Applied Optics and Precision Engineering, Germany. This can be used to create a detailed and accurate digital archive, he added, while also allowing study of the object's material composition.

Hyperspectral imagers detect dozens to hundreds of colors, or wavelengths, instead of the three detected by normal cameras. Each pixel of a traditional hyperspectral image contains wavelength-dependent radiation intensity over a specific range linked to two-dimensional coordinates.

The new hyperspectral imaging system, developed in collaboration with Gunther Notni's research group from Germany's Ilmenau University of Technology, advances this imaging approach by acquiring additional dimension information.

In The Optical Society (OSA) journal Optics Express, researchers describe how each pixel acquired by their new 5D hyperspectral imager contains the time; x, y and z spatial coordinates; and information based on light reflectance ranging from the visible to the near-infrared portion of the electromagnetic spectrum.

"State-of-the-art systems that aim to determine both the shape of the objects and their spectral properties are based on multiple sensors, offer low accuracy or require long measurement times," said Heist. "In contrast, our approach combines excellent spatial and spectral resolution, great depth accuracy and high frame rates in a single compact system."

Creating a compact prototype
The researchers created a prototype system with a footprint of just 200 by 425 millimeters - about the size of a laptop. It uses two hyperspectral snapshot cameras to form 3D images and obtain depth information much like our eyes do by capturing a scene from two slightly different directions.

By identifying particular points on the object's surface that are present in both camera views, a complete set of data points in space for that object can be created. However, this approach only works if the object has enough texture or structure to unambiguously identify points.

To capture both spectral information and the surface shape of objects that may not be highly texturized or structured the researchers incorporated a specially developed high-speed projector into their system. Using a mechanical projection method, a series of aperiodic light patterns are used to artificially texture the object surface.

This allows robust and accurate 3D reconstruction of the surface. The spectral information obtained by the different channels of the hyperspectral cameras are then mapped onto these points.

"Our earlier development of a system projecting aperiodic patterns by a rotating wheel made it possible to project pattern sequences at potentially very high frame rates and outside the visible spectral range," said Heist. "New hyperspectral snapshot cameras were also an important component because they allow spatially and spectrally resolved information to be captured in a single image, without any scanning."

High-speed hyperspectral imaging
The researchers characterized their prototype by analyzing the spectral behavior of the cameras and the 3D performance of the entire system. They showed that it could capture visible to near-infrared 5D images as fast as 17 frames per second, significantly faster than other similar systems.

To demonstrate the usefulness of the prototype to analyze culturally significant objects, the researchers used it to digitally document a historical relief globe from 1885. They also created near-infrared 5D models of a person's hand and showed that the system could be used as a simple way to detect veins.

The imager could also be used for agricultural applications, which the researchers showed by using it to capture the 5D change in reflection spectrum of citrus plant leaves as they were absorbing water.

The researchers plan to optimize their prototype by using hyperspectral cameras with a higher signal-to-noise ratio or that exhibit less crosstalk between the different spectral channels.

Ideally, the system would be tailored to specific applications. For example, cameras with high imaging rates could be used to analyze dynamically changing object properties, while using sensors with high resolution in the infrared wavelength might be useful for detecting chemical leaks.

Research Report: "5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light"


Related Links
The Optical Society
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Wireless communication breaks through water-air barrier
Boston MA (SPX) Aug 23, 2018
MIT researchers have taken a step toward solving a longstanding challenge with wireless communication: direct data transmission between underwater and airborne devices. Today, underwater sensors cannot share data with those on land, as both use different wireless signals that only work in their respective mediums. Radio signals that travel through air die very rapidly in water. Acoustic signals, or sonar, sent by underwater devices mostly reflect off the surface without ever breaking through. This ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Heat shield install brings Orion spacecraft closer to space

Interns create dynamic visualization of NASA's space-to-ground communications resources

Technologies for deep space survival

Pristine no more: cruise ships, crowds swamp Montenegro

TECH SPACE
Chinese private space company to launch first carrier rocket

GEOStar-3 mission success enabled by Aerojet Rocketdyne XR-5 Hall Thruster System

Stratolaunch announces new launch vehicles

Stennis Begins 5th Series of RS-25 Engine Tests

TECH SPACE
NASA's InSight passes halfway to Mars, instruments check in

Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

TECH SPACE
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

TECH SPACE
Successful capital raising sees Kleos Space Launch on the ASX

Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

TECH SPACE
NASA Langley collaborates with industry to develop space technologies

Marines conduct field test of laser-based communications system

Specially prepared paper can bend, fold or flatten on command

Crack formation captured in 3D in real time

TECH SPACE
Infant exoplanet weighed by Hipparcos and Gaia

Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

Scientists discovered organic acid in a protoplanetary disk

TECH SPACE
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.