. | . |
New approach to thermal protection in outdoor wearable electronics by Staff Writers Seoul, South Korea (SPX) Mar 17, 2021
Wearable electronic devices like fitness trackers and biosensors, are very promising for healthcare applications and research. They can be used to measure relevant biosignals in real-time and send gathered data wirelessly, opening up new ways to study how our bodies react to different types of activities and exercise. However, most body-worn devices face a common enemy: heat. Heat can accumulate in wearable devices owing to various reasons. Operation in close contact with the user's skin is one of them; this heat is said to come from internal sources. Conversely, when a device is worn outdoors, sunlight acts as a massive external source of heat. These sources combined can easily raise the temperature of wearable devices to levels that not only are uncomfortable for the user, but also cause erroneous readings and measurements. Unfortunately, researchers have been unable to completely address this issue. Most available heat sinks and dissipators for wearable devices are based on thin metallic layers, which block electromagnetic signals and thus hinder wireless communications. In a recent study published in Advanced Science, scientists from Korea and the US have developed an innovative solution to combat heat in wearable biosensors. Led by Professor Young Min Song from Gwangju Institute of Science and Technology (GIST), Korea, the team produced a nano-/micro-voids polymer (NMVP), a flexible and nonmetallic cooler made from two perforated polymers: polymethylmetacrylate and styrene-ethylene-butylene-styrene. The resulting material has many attractive qualities. First, it has almost 100% reflectivity in the solar spectrum, meaning that it reflects nearly all sunlight. Second, it has high emissivity in the range of frequencies known as the atmospheric window. Thus, the material can easily radiate excess heat into the atmosphere, which helps cool it down. Finally, the good mechanical properties of the new polymer make it suitable for outdoor wearable devices. To test the effectiveness of their innovation, the scientists built a patch-type tissue oximeter equipped with an NMVP-based cooler. Thanks to the superior performance of the cooler, their wearable biosensor could externally measure the concentration of oxygen in blood more accurately than conventional oximeters while also maintaining a much lower temperature. "Our approach is the first demonstration of successful thermal management in wearable devices considering both internal and external heat sources without blocking wireless communications," remarks Prof. Song. The promising results of this study could pave the way for the widespread adoption of wearable devices and biosensors, which will become powerful tools in health monitoring and the training of athletes. With eyes set on the future, Prof. Song comments: "Our flexible strategy for radiative cooling will help bring about thermally protected skin-like electronics, which in turn will make human body monitoring unobtrusive and imperceptible." The term "cool gadgets" is likely to get a whole new meaning in the future!
Tunnels to become CO2-neutral energy suppliers Graz, Austria (SPX) Feb 24, 2021 After completion in about ten years, the Brenner base tunnel is expected to provide relief for transit traffic between Italy and Austria. The Brenner Base Tunnel Company (BBT SE) and Innsbrucker Kommunalbetriebe (Innsbruck municipal works) now want to generate an additional benefit together with the Institute of Rock Mechanics and Tunnelling at Graz University of Technology and determine the geothermal potential of the tunnel, as Institute head Thomas Marcher explains: "We are investigating whether and ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |