. 24/7 Space News .
CHIP TECH
New algorithm could unleash the power of quantum computers
by Staff Writers
Los Alamos NM (SPX) Oct 07, 2020

A new algorithm leaps past limits restricting quantum computers.

A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

"Quantum computers have a limited time to perform calculations before their useful quantum nature, which we call coherence, breaks down," said Andrew Sornborger of the Computer, Computational, and Statistical Sciences division at Los Alamos National Laboratory, and senior author on a paper announcing the research.

"With a new algorithm we have developed and tested, we will be able to fast forward quantum simulations to solve problems that were previously out of reach."

Computers built of quantum components, known as qubits, can potentially solve extremely difficult problems that exceed the capabilities of even the most powerful modern supercomputers. Applications include faster analysis of large data sets, drug development, and unraveling the mysteries of superconductivity, to name a few of the possibilities that could lead to major technological and scientific breakthroughs in the near future.

Recent experiments have demonstrated the potential for quantum computers to solve problems in seconds that would take the best conventional computer millennia to complete. The challenge remains, however, to ensure a quantum computer can run meaningful simulations before quantum coherence breaks down.

"We use machine learning to create a quantum circuit that can approximate a large number of quantum simulation operations all at once," said Sornborger. "The result is a quantum simulator that replaces a sequence of calculations with a single, rapid operation that can complete before quantum coherence breaks down."

The Variational Fast Forwarding (VFF) algorithm that the Los Alamos researchers developed is a hybrid combining aspects of classical and quantum computing. Although well-established theorems exclude the potential of general fast forwarding with absolute fidelity for arbitrary quantum simulations, the researchers get around the problem by tolerating small calculation errors for intermediate times in order to provide useful, if slightly imperfect, predictions.

In principle, the approach allows scientists to quantum-mechanically simulate a system for as long as they like. Practically speaking, the errors that build up as simulation times increase limits potential calculations. Still, the algorithm allows simulations far beyond the time scales that quantum computers can achieve without the VFF algorithm.

One quirk of the process is that it takes twice as many qubits to fast forward a calculation than would make up the quantum computer being fast forwarded. In the newly published paper, for example, the research group confirmed their approach by implementing a VFF algorithm on a two qubit computer to fast forward the calculations that would be performed in a one qubit quantum simulation.

In future work, the Los Alamos researchers plan to explore the limits of the VFF algorithm by increasing the number of qubits they fast forward, and checking the extent to which they can fast forward systems. The research was published September 18, 2020 in the journal npj Quantum Information.

Research Report: "Variational Fast Forwarding for Quantum Simulation Beyond the Coherence Time"


Related Links
Los Alamos National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
China chip giant SMIC shares sink on US export controls
Hong Kong (AFP) Sept 28, 2020
Shares in China's biggest chipmaker tumbled Monday on reports that the United States had imposed export controls on the company, the latest salvo in the countries' battle for technological dominance. In a new blow for China's advanced tech ambitions, the US Commerce Department reportedly ordered companies to seek permission before selling equipment to Semiconductor Manufacturing International Corp (SMIC). Equipment sold to the Chinese company posed an "unacceptable risk" of being diverted to "mi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
ISS Crew continues troubleshooting as tests isolate small leak

Russia reports 'non-standard' air leak on Space Station

Trump tech war with China changes the game for US business

ISS moves to avoid space debris

CHIP TECH
SpaceX aborts Starlink satellite launch attempt

Gryphon Technologies wins $14M DARPA task order to support the DRACO program

NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

United Launch Alliance scrubs spy satellite launch 2nd time this week

CHIP TECH
NASA's New Mars Rover Is Ready for Space Lasers

ExoMars moves on

Study: Mars has four bodies of water underneath surface

Could life exist deep underground on Mars

CHIP TECH
NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

Chinese spacecraft launched mystery object into space before returning to Earth

CHIP TECH
Swarm announces pricing for world's lowest-cost satellite communications network

NanoAvionics launches second satellite for Lacuna Space's growing IoT satellite constellation

Machine-learning nanosats to inform global trade

SpaceX postpones Starlink launch as thick clouds persist

CHIP TECH
Secretive Big Data firm Palantir makes low-key stocks debut

NASA looks to advance 3D Printing construction systems for the Moon and Mars

EPC Space announces family of space level qualified power transistors

3D-printed, transparent fibers can sense breath, sounds, cell movements

CHIP TECH
Search for New Worlds at Home with NASA's Planet Patrol Project

CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

Let them eat rocks

Evolution of radio-resistance is more complicated than previously thought

CHIP TECH
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.