![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Agency Writers Baltimore MD (SPX) Jan 12, 2023
NASA's James Webb Space Telescope has imaged the inner workings of a dusty disk surrounding a nearby red dwarf star. These observations represent the first time the previously known disk has been imaged at these infrared wavelengths of light. They also provide clues to the composition of the disk. The star system in question, AU Microscopii or AU Mic, is located 32 light-years away in the southern constellation Microscopium. It's approximately 23 million years old, meaning that planet formation has ended since that process typically takes less than 10 million years. The star has two known planets, discovered by other telescopes. The dusty debris disk that remains is the result of collisions between leftover planetesimals - a more massive equivalent of the dust in our solar system that creates a phenomenon known as zodiacal light. "A debris disk is continuously replenished by collisions of planetesimals. By studying it, we get a unique window into the recent dynamical history of this system," said Kellen Lawson of NASA's Goddard Space Flight Center, lead author on the study and a member of the research team that studied AU Mic. "This system is one of the very few examples of a young star, with known exoplanets, and a debris disk that is near enough and bright enough to study holistically using Webb's uniquely powerful instruments," said Josh Schlieder of NASA's Goddard Space Flight Center, principal investigator for the observing program and a study co-author. The team used Webb's Near-Infrared Camera (NIRCam) to study AU Mic. With the help of NIRCam's coronagraph, which blocks the intense light of the central star, they were able to study the region very close to the star. The NIRCam images allowed the researchers to trace the disk as close to the star as 5 astronomical units (460 million miles) - the equivalent of Jupiter's orbit in our solar system. "Our first look at the data far exceeded expectations. It was more detailed than we expected. It was brighter than we expected. We detected the disk closer in than we expected. We're hoping that as we dig deeper, there's going to be some more surprises that we hadn't predicted," stated Schlieder. The observing program obtained images at wavelengths of 3.56 and 4.44 microns. The team found that the disk was brighter at the shorter wavelength, or "bluer," likely meaning that it contains a lot of fine dust that is more efficient at scattering shorter wavelengths of light. This finding is consistent with the results of prior studies, which found that the radiation pressure from AU Mic - unlike that of more massive stars - would not be strong enough to eject fine dust from the disk. While detecting the disk is significant, the team's ultimate goal is to search for giant planets in wide orbits, similar to Jupiter, Saturn, or the ice giants of our solar system. Such worlds are very difficult to detect around distant stars using either the transit or radial velocity methods. "This is the first time that we really have sensitivity to directly observe planets with wide orbits that are significantly lower in mass than Jupiter and Saturn. This really is new, uncharted territory in terms of direct imaging around low-mass stars," explained Lawson. These results are being presented in a press conference at the 241st meeting of the American Astronomical Society. The observations were obtained as part of Webb's Guaranteed Time program 1184.
![]() ![]() Webb reveals links between galaxies near and far Greenbelt MD (SPX) Jan 10, 2023 A new analysis of distant galaxies imaged by NASA's James Webb Space Telescope shows that they are extremely young and share some remarkable similarities to "green peas," a rare class of small galaxies in our cosmic backyard. "With detailed chemical fingerprints of these early galaxies, we see that they include what might be the most primitive galaxy identified so far. At the same time, we can connect these galaxies from the dawn of the universe to similar ones nearby, which we can study in much g ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |