Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
New Way of Probing Exoplanet Atmospheres
by Staff Writers
Leiden, The Netherlands (SPX) Jun 28, 2012


illustration only

For the first time a clever new technique has allowed astronomers to study the atmosphere of an exoplanet in detail - even though it does not pass in front of its parent star. An international team has used ESO's Very Large Telescope to directly catch the faint glow from the planet Tau Bootis b. They have studied the planet's atmosphere and measured its orbit and mass precisely for the first time - in the process solving a 15-year old problem.

Surprisingly, the team also finds that the planet's atmosphere seems to be cooler higher up, the opposite of what was expected. The results will be published in the 28 June 2012 issue of the journal Nature.

The planet Tau Bootis b [1] was one of the first exoplanets to be discovered back in 1996, and it is still one of the closest exoplanets known. Although its parent star is easily visible with the naked eye, the planet itself certainly is not, and up to now it could only be detected by its gravitational effects on the star. Tau Bootis b is a large "hot Jupiter" planet orbiting very close to its parent star.

Like most exoplanets, this planet does not transit the disc of its star (like the recent transit of Venus). Up to now such transits were essential to allow the study of hot Jupiter atmospheres: when a planet passes in front of its star it imprints the properties of the atmosphere onto the starlight. As no starlight shines through Tau Bootis b's atmosphere towards us, this means the planet's atmosphere could not be studied before.

But now, after 15 years of attempting to study the faint glow that is emitted from hot Jupiter exoplanets, astronomers have finally succeeded in reliably probing the structure of the atmosphere of Tau Bootis b and deducing its mass accurately for the first time.

The team used the CRIRES [2] instrument on the Very Large Telescope (VLT) at ESO's Paranal Observatory in Chile. They combined high quality infrared observations (at wavelengths around 2.3 microns) [3] with a clever new trick to tease out the weak signal of the planet from the much stronger one from the parent star [4].

Lead author of the study Matteo Brogi (Leiden Observatory, the Netherlands) explains: "Thanks to the high quality observations provided by the VLT and CRIRES we were able to study the spectrum of the system in much more detail than has been possible before. Only about 0.01% of the light we see comes from the planet, and the rest from the star, so this was not easy".

The majority of planets around other stars were discovered by their gravitational effects on their parent stars, which limits the information that can be gleaned about their mass: they only allow a lower limit to be calculated for a planet's mass [5].

The new technique pioneered here is much more powerful. Seeing the planet's light directly has allowed the astronomers to measure the angle of the planet's orbit and hence work out its mass precisely.

By tracing the changes in the planet's motion as it orbits its star, the team has determined reliably for the first time that Tau Bootis b orbits its host star at an angle of 44 degrees and has a mass six times that of the planet Jupiter in our own solar system.

"The new VLT observations solve the 15-year old problem of the mass of Tau Bootis b. And the new technique also means that we can now study the atmospheres of exoplanets that don't transit their stars, as well as measuring their masses accurately, which was impossible before", says Ignas Snellen (Leiden Observatory, the Netherlands), co-author of the paper. "This is a big step forward."

As well as detecting the glow of the atmosphere and measuring Tau Bootis b's mass, the team has probed its atmosphere and measured the amount of carbon monoxide present, as well as the temperature at different altitudes by means of a comparison between the observations and theoretical models.

A surprising result from this work was that the new observations indicated an atmosphere with a temperature that falls higher up. This result is the exact opposite of the temperature inversion - an increase in temperature with height - found for other hot Jupiter exoplanets [6] [7].

The VLT observations show that high resolution spectroscopy from ground-based telescopes is a valuable tool for a detailed analysis of non-transiting exoplanets' atmospheres.

The detection of different molecules in future will allow astronomers to learn more about the planet's atmospheric conditions. By making measurements along the planet's orbit, astronomers may even be able to track atmospheric changes between the planet's morning and evening.

"This study shows the enormous potential of current and future ground-based telescopes, such as the E-ELT. Maybe one day we may even find evidence for biological activity on Earth-like planets in this way", concludes Ignas Snellen.

Notes
[1] The name of the planet, Tau Bootis b, combines the name of the star (Tau Bootis) with the letter "b" indicating that this is the first planet found around this star. The designation Tau Bootis a is used for the star itself.

[2] CRyogenic InfraRed Echelle Spectrometer

[3] At infrared wavelengths, the parent star emits less light than in the optical regime, so this is a wavelength regime favorable for separating out the dim planet's signal.

[4] This method uses the velocity of the planet in orbit around its parent star to distinguish its radiation from that of the star and also from features coming from the Earth's atmosphere. The same team of astronomers tested this technique before on a transiting planet, measuring its orbital velocity during its crossing of the stellar disc.

[5] This is because the tilt of the orbit is normally unknown. If the planet's orbit is tilted relative to the line of sight between Earth and the star then a more massive planet causes the same observed back and forth motion of the star as a lighter planet in a less tilted orbit and it is not possible to separate the two effects.

[6] Thermal inversions are thought to be characterized by molecular features in emission in the spectrum, rather than in absorption, as interpreted from photometric observations of hot Jupiters with the Spitzer Space Telescope. The exoplanet HD 209458b is the best-studied example of thermal inversions in the exoplanet atmospheres.

[7] This observation supports models in which strong ultraviolet emission associated to chromospheric activity - similar to the one exhibited by the host star of Tau Bootis b - is responsible for the inhibition of the thermal inversion.

.


Related Links
ESO
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
SciTechTalk: Quick, name the planets!
Washington DC (UPI) Jun 24, 2012
When the prestigious Kavli Prize for Astrophysics was announced for 2012, one of the winners was Mike Brown, an astronomer working at the California Institute of Technology in California. Possibly not a household name, but Brown is the reason schoolchildren today are being taught our solar system is comprised of eight planets, not the nine we've been told of for more than seven decades. ... read more


EXO WORLDS
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

EXO WORLDS
Curiosity Rover on Track for Early August Landing

Opportunity Drives a Little

NASA tweaks flight path of Mars mission

Extensive Water in Mars Interior

EXO WORLDS
XCOR and Excalibur Almaz sign MOU for suborbital training services

Complex Challenges Solved In Tech Meetings For Commercial Crew Program

Boeing Completes Key Reviews of Space Launch System

Two NASA Visualizations Selected for Computers Graphics Showcase

EXO WORLDS
China spacecraft set to return to Earth Friday

Experts respond to rumors about Shenzhou-9

Staying stimulated in space

China's Hu praises astronauts for space advance

EXO WORLDS
ISS Resupply Important to Kennedy's Past and Future

Andre wraps up six months of work on ISS

Astrium awarded two ATV evolution studies from ESA

New Space Station Crew Confirmed

EXO WORLDS
SpaceX's Merlin 1D Engine Achieves Full Mission Duration Firing

USAF officials announce milestone Atlas V launch

EVE Underflight Calibration Sounding Rocket Launch

ILS and AsiaSat Announce a New Contract for an ILS Proton Launch

EXO WORLDS
New Way of Probing Exoplanet Atmospheres

Forgotten Star Cluster Useful For Solar Science And Search for Earth Like Planets

SciTechTalk: Quick, name the planets!

Where Are The Metal Worlds And Is The Answer Blowing In The Wind

EXO WORLDS
France pulls plug on Internet forerunner Minitel

Abuse at Apple's China suppliers: watchdog

Google rolls in tablet market with Nexus 7

Mercury mineral evolution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement