. 24/7 Space News .
New Panorama Reveals More Than a Thousand Black Holes

A new wide-field panorama reveals more than a thousand supermassive black holes in the centers of galaxies, some up to several billion times more massive than the sun. This survey, taken in a region of the Bootes constellation, involved 126 separate Chandra exposures of 5,000-seconds each, making it the largest contiguous field ever obtained by the observatory. At 9.3 square degrees, it is over 40 times larger than the full moon seen on the night sky, which is also shown in this graphic for scale. In this image, the red represents low-energy X-rays, green shows the medium range, and blue the higher energy X-rays. Detaliled capiton and supporting images
by Staff Writers
Huntsville, AL (SPX) Mar 13, 2007
By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur.

The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies.

Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN.

"We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes."

Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures.

"With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA.

The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An observer from Earth would have their view blocked by this torus by different amounts, depending on the orientation of the torus.

According to this model, astronomers would expect a large sample of black holes to show a range of absorption of the radiation from the nuclei. This absorption should range from completely exposed to completely obscured, with most in-between. Nuclei that are completely obscured are not detectable, but heavily obscured ones are.

"Instead of finding a whole range, we found nearly all of the black holes are either naked or covered by a dense veil of gas," said Hickox. "Very few are in between, which makes us question how well we know the environment around these black holes."

This study found more than 600 obscured and 700 unobscured AGN, located between about six to 11 billion light years from Earth. They were found using an early application of a new search method.

By looking at the infrared colors of objects with Spitzer, AGN can be separated from stars and galaxies. The Chandra and optical observations then verify these objects are AGN. This multi-wavelength method is especially efficient at finding obscured AGN.

"These results are very exciting, using two NASA Great Observatories to find and understand the largest sample of supermassive black holes ever found in the distant universe", said co-investigator Daniel Stern, of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The Chandra image is the largest contiguous field ever obtained by the observatory. At 9.3 square degrees, it is over 40 times larger than the full moon seen on the night sky and over 80 times larger than either of the Chandra Deep Fields.

This survey, taken in a region of the Bootes constellation, involved 126 separate pointings of 5,000-second Chandra exposures each. The researchers combined this with data obtained from Spitzer, and Kitt Peak's 4-meter Mayall and the MMT 6.5-meter optical telescopes, both located outside Tuscon, Ariz., from the same patch of sky.

Email This Article

Related Links
Chandra at Harvard
Chandra at NASA
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Center AT MIT To Explore Quantum Information Theory
Cambridge MA (SPX) Mar 11, 2007
MIT's new $3.5 million W. M. Keck Foundation Center for Extreme Quantum Information Theory (xQIT) has been inaugurated with $1.63 million in funding from the Keck Foundation, as well as funding from MIT and other sponsors, to discover answers to these fundamental, yet still unsolved, questions.







  • NASA To Host Space University Session
  • JAXA Hosts Kyoto Workshop For Global Space Exploration Strategy
  • Astronaut Fired A Month After Kidnap Attempt
  • Astrophysicist Hawking To Try Out Weightlessness

  • Onward To The Valley Without Peril
  • Early Mars Had Underground Water System
  • Rosetta Delivers Phobos Transit Animation And Sees Mars In Stereo
  • SpaceDev's Starsys Division Awarded Contract For NASA Mars Science Explorer Mission

  • Canadian Satellite Given Final Checks At Russian Launch Pad
  • Official Opening Of The Soyuz Launch Base Construction Site In French Guiana
  • First Ariane 5 Launch Of 2007 Finally Gets Away
  • United Launch Alliance Successfully Launches First USAF Atlas 5

  • CryoSat-2 On The Road To Recovery
  • Space Scientists To Take The Pulse Of Planet Earth
  • Climate Change View Clearer With New Oceans Satellite
  • Satellite Scientists Set To Descend On Hobart

  • The Tip of the Iceberg
  • New Horizons Completes First Stage Of Long Journey To Pluto And Beyond
  • Pluto-Bound New Horizons Spacecraft Gets A Boost From Jupiter
  • Defining Planets

  • Gamma-Ray Burst Challenges Theory
  • NASA Mission Finds Link Between Big And Small Stellar Blasts
  • AEGIS Survey Reveals New Principle Governing Galaxy Formation And Evolution
  • Hubble Pans Across Heavens To Harvest 50,000 Evolving Galaxies

  • A SMART Bridge To The Future Exploration Of The Moon
  • First Chinese Lunar Probe Assembled And Ready For Launch
  • The Edge Of Luna Incognita By SMART-1
  • China To Launch Lunar Satellite Probe This Year

  • Glonass Cheaper To Build Than GPS Says Putin
  • Raytheon To Pursue Air Force Upgrade For NextGen GPS Control Segment
  • ESA Award SSTL Contract To Build A Second GIOVE-A
  • Spirent Communications Announces Combined GPS Galileo Simulation System

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement