. 24/7 Space News .
New Model Describes Avalanche Behavior Of Superfluid Helium

illustration only
by Staff Writers
Champaign IL (SPX) Apr 25, 2007
By utilizing ideas developed in disparate fields, from earthquake dynamics to random-field magnets, researchers at the University of Illinois have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.

Just as superconductors have no electrical resistance, superfluids have no viscosity, and can flow freely. Like superconductors, which can be used to measure extremely tiny magnetic fields, superfluids could create a new class of ultra-sensitive rotation sensors for use in precision guidance systems and other applications.

But, before new sensors can be built, scientists and engineers must first acquire a better understanding of the odd quirks of superfluids arising in these devices.

In the April 23 issue of Physical Review Letters, U. of I. physicist Paul Goldbart, graduate student David Pekker and postdoctoral research associate Roman Barankov describe a model they developed to explain some of those quirks, which were found in recent experiments conducted by researchers at the University of California at Berkeley.

In the Berkeley experiments, physicist Richard Packard and his students Yuki Sato and Emile Hoskinson explored the behavior of superfluid helium when forced to flow from one reservoir to another through an array of several thousand nano-apertures. Their intent was to amplify the feeble whistling sound of phase-slips associated with superfluid helium passing through a single nano-aperture by collecting the sound produced by all of the apertures acting in concert.

At low temperatures, this amplification turned out, however, to be surprisingly weak, because of an unanticipated loss of synchronicity among the apertures.

"Our model reproduces the key physical features of the Berkeley group's experiments, including a high-temperature synchronous regime, a low-temperature asynchronous regime, and a transition between the two," said Goldbart, who also is a researcher at the university's Frederick Seitz Materials Research Laboratory.

The theoretical model developed by Pekker, Barankov and Goldbart balances a competition between interaction and disorder - two behaviors more commonly associated with magnetic materials and sliding tectonic plates.

The main components of the researchers' model are nano-apertures possessing different temperature-dependent critical flow velocities (the disorder), and inter-aperture coupling mediated by superflow in the reservoirs (the interactions).

For helium, the superfluid state begins at a temperature of 2.18 kelvins. Very close to that temperature, inter-pore coupling tends to cause neighbors of a nano-aperture that already has phase-slipped also to slip. This process may cascade, creating an avalanche of synchronously slipping phases that produces a loud whistle.

However, at roughly one-tenth of a kelvin colder, the differences between the nano-apertures dominate, and the phase-slips in the nano-apertures are asynchronous, yielding a non-avalanching regime. The loss of synchronized behavior weakens the whistle.

"In our model, competition between disorder in critical flow velocities and effective inter-aperture coupling leads to the emergence of rich collective dynamics, including a transition between avalanching and non-avalanching regimes of phase-slips," Goldbart said. "A key parameter is temperature. Small changes in temperature can lead to large changes in the number of phase-slipping nano-apertures involved in an avalanche."

Email This Article

Related Links
University of Illinois at Urbana-Champaign
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Revamped Experiment Could Detect Elusive Particle
Gainesville, FL (SPX) Apr 25, 2007
An experiment called "shining light through walls" would seem hard to improve upon. But University of Florida physicists have proposed a way to do just that, a step they say considerably improves the chance of detecting one of the universe's most elusive particles, a candidate for the common but mysterious dark matter.







  • Weldon Joins Call For Space Summit To Discuss Space Program Future
  • Building Shields For Your Starship
  • Earth Magnetic Field A Hazard For Lunar Astronauts
  • Facing Tanning Booth Cancer Risk

  • Spirit Continues Studies Of Rocks Near Home Plate
  • Seeking A Soft Landing On Mars
  • Dust Devils Whip By Spirit
  • Investigating The Dark Streak Of Victoria Crater

  • India Puts Italian Satellite Into Orbit
  • Indian Space Program Goes Commercial
  • Russia Puts 16 Foreign Satellites Into Orbit
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite

  • Envisat Symposium 2007 Kicks Off In Switzerland
  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite

  • Rosetta And New Horizons Watch Jupiter In Joint Campaign
  • New Horizons Shows Off Its Color Camera In Io Image
  • Alice Views Jupiter And Io
  • A Look From LEISA

  • UK Scientists Sift Superfine Stardust
  • Dark Matter Charted Out To Five Billion Light Years
  • A New Class Of Interstellar Lighthouse
  • Astronomers Map Out Planetary Danger Zone

  • Longest Holiday In Space Ends As Russia Touts Lunar Tour Within Five Years
  • Back To The Moon For Some Reconnaissance
  • Rochester Triumphs In NASA Great Moonbuggy Race
  • Shanghai Vies To Win Battle Of Moon Rovers

  • Safer Air Traffic With EGNOS
  • Boeing-Led Team Developing Surface Navigation Concept For DARPA
  • China Launches Compass Navigation Satellite
  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement