. | . |
New Discovery On Magnetic Reconnection To Impact Future Space Missions
Paris, France (ESA) Jan 24, 2008 ESA's Cluster mission has, for the first time, observed the extent of the region that triggers magnetic reconnection, and it is much larger than previously thought. This gives future space missions a much better chance of studying it. Space is filled with plasma (a gas composed of ions and electrons, globally neutral) and is threaded by magnetic fields. These magnetic fields store energy which can be released explosively, in a process called magnetic reconnection. This process plays a key role in numerous astrophysical phenomena: star formation, solar flares and intense aurorae, to name a few. On Earth, magnetic reconnection prevents the efficient production of electricity in controlled fusion reactors, potential sources of electricity for the future.
Schematic of magnetic field lines during reconnection "Understanding the structure of the diffusion region and its role in controlling the rate at which magnetic energy is converted into particle energy remains a key scientific challenge," says Dr Michael Shay, University of Delaware, USA. Until recently, theoretical scientists believed that the electron diffusion region was relatively tiny (width about 2 km, length about 10 km). In the vastness of space, the chance of a spacecraft encountering this region would therefore be exceedingly small. With increased computational power, simulations showed electron diffusion regions that were a lot more elongated than those seen earlier. It was not possible to judge whether the new finding was real because the length of the region increased with more powerful simulations. Nor it was known whether such a layer would be stable in the real, 3D world.
Comparison between observations and simulation "These Cluster observations are very significant since they are the first measurements of the length of the electron diffusion region in the space environment. The finding drastically changes the way we understand the physics of reconnection," noted Dr James Drake, University of Maryland, USA. "This discovery of a large electron diffusion region gives future ESA and NASA missions a much better chance to study it," said Tai Phan at the University of California at Berkeley, USA, lead author of the paper on the findings.
Magnetic reconnection simulation The four spacecraft of NASA's Magnetospheric Multi-Scale mission, planned for launch in 2014, are being designed for such measurements. Cross-scale, a mission under study at ESA in collaboration with other space agencies, would use 12 spacecraft to probe the diffusion region, whilst simultaneously measuring the consequences of energy released by reconnection in the surrounding environment. "With the higher probability of encountering the electron diffusion region, we can be confident that future missions will be able to fully understand magnetic reconnection," said Dr Philippe Escoubet, ESA's Cluster and Double Star Project Scientist and Cross-scale Study Scientist. Community Email This Article Comment On This Article Related Links Cluster Understanding Time and Space
Could The Universe Be Tied Up With Cosmic String Brighton, UK (SPX) Jan 22, 2008 Cosmic strings are predicted by high energy physics theories, including superstring theory. This is based on the idea that particles are not just little points, but tiny vibrating bits of string Cosmic strings are predicted to have extraordinary amounts of mass - perhaps as much as the mass of the Sun - packed into each metre of a tube whose width is less a billion billionth of the size of an atom. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |