. 24/7 Space News .
EARLY EARTH
New Curtin-led research discovers the heart of our evolution
by Staff Writers
Perth, Australia (SPX) Sep 22, 2022

The Gogo fish fossil where the 380-million-year-old, 3D preserved heart was discovered by researchers. Pictured at the WA Museum.

Researchers have discovered a 380-million-year-old heart - the oldest ever found - alongside a separate fossilised stomach, intestine and liver in an ancient jawed fish, shedding new light on the evolution of our own bodies.

The new research, published in Science, found that the position of the organs in the body of arthrodires - an extinct class of armoured fishes that flourished through the Devonian period from 419.2 million years ago to 358.9 million years ago - is similar to modern shark anatomy, offering vital new evolutionary clues.

Lead researcher John Curtin Distinguished Professor Kate Trinajstic, from Curtin's School of Molecular and Life Sciences and the Western Australian Museum, said the discovery was remarkable given that soft tissues of ancient species were rarely preserved and it was even rarer to find 3D preservation.

"As a palaeontologist who has studied fossils for more than 20 years, I was truly amazed to find a 3D and beautifully preserved heart in a 380-million-year-old ancestor," Professor Trinajstic said.

"Evolution is often thought of as a series of small steps, but these ancient fossils suggest there was a larger leap between jawless and jawed vertebrates. These fish literally have their hearts in their mouths and under their gills - just like sharks today."

This research presents - for the first time - the 3D model of a complex s-shaped heart in an arthrodire that is made up of two chambers with the smaller chamber sitting on top.

Professor Trinajstic said these features were advanced in such early vertebrates, offering a unique window into how the head and neck region began to change to accommodate jaws, a critical stage in the evolution of our own bodies.

"For the first time, we can see all the organs together in a primitive jawed fish, and we were especially surprised to learn that they were not so different from us," Professor Trinajstic said.

"However, there was one critical difference - the liver was large and enabled the fish to remain buoyant, just like sharks today. Some of today's bony fish such as lungfish and birchers have lungs that evolved from swim bladders but it was significant that we found no evidence of lungs in any of the extinct armoured fishes we examined, which suggests that they evolved independently in the bony fishes at a later date."

The Gogo Formation, in the Kimberley region of Western Australia where the fossils were collected, was originally a large reef.

Enlisting the help of scientists at the Australian Nuclear Science and Technology Organisation in Sydney and the European Synchrotron Radiation Facility in France, researchers used neutron beams and synchrotron x-rays to scan the specimens, still embedded in the limestone concretions, and constructed three-dimensional images of the soft tissues inside them based on the different densities of minerals deposited by the bacteria and the surrounding rock matrix.

This new discovery of mineralised organs, in addition to previous finds of muscles and embryos, makes the Gogo arthrodires the most fully understood of all jawed stem vertebrates and clarifies an evolutionary transition on the line to living jawed vertebrates, which includes the mammals and humans.

Co-author Professor John Long, from Flinders University, said: "These new discoveries of soft organs in these ancient fishes are truly the stuff of palaeontologists' dreams, for without doubt these fossils are the best preserved in the world for this age. They show the value of the Gogo fossils for understanding the big steps in our distant evolution. Gogo has given us world firsts, from the origins of sex to the oldest vertebrate heart, and is now one of the most significant fossil sites in the world. It's time the site was seriously considered for world heritage status."

Co-author Professor Per Ahlberg, from Uppsala University, said: "What's really exceptional about the Gogo fishes is that their soft tissues are preserved in three dimensions. Most cases of soft-tissue preservation are found in flattened fossils, where the soft anatomy is little more than a stain on the rock. We are also very fortunate in that modern scanning techniques allow us to study these fragile soft tissues without destroying them. A couple of decades ago, the project would have been impossible."

The Curtin-led research was a collaboration with Flinders University, the Western Australian Museum, the European Synchrotron Radiation Facility in France, the Australian Nuclear Science and Technology Organisation's nuclear reactor, Uppsala University, Monash University's Australian Regenerative Medicine Institute and the South Australian Museum.

Research Report:'Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstatte',


Related Links
Curtin University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
541-million-year-old 3D fossil algae reveal modern-looking ancestry of the plant kingdom
Toronto, Canada (SPX) Sep 22, 2022
Paleontologists have identified a new genus and species of algae called Protocodium sinense which predates the origin of land plants and modern animals and provides new insight into the early diversification of the plant kingdom. Discovered at a site in China, this 541-million-year-old fossil is the first and oldest green alga from this era to be preserved in three dimensions, enabling the researchers to investigate its internal structure and identify the new specimen with unprecedented accuracy. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
NASA postpones Crew-5 mission over Hurricane Ian

Amid Ukraine war, US flies Russian cosmonaut to ISS

Three Russian cosmonauts return from space station

NASA awards commercial Small Satellite Data Acquisition Agreement

EARLY EARTH
Rocket Lab to launch environmental monitoring satellite for General Atomics

SpinLaunch completes Flight Test 10

Elon Musk may help NASA extend life for Hubble

Virgin Orbit's next rocket ready for Cornwall

EARLY EARTH
A broken rock won't break our Team

Insights into Utopia Basin revealed by Mars rover Zhurong

Sols 3614-3615: Chemin's Moment To Shine

India loses contact with budget Mars orbiter after eight years

EARLY EARTH
Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

Space missions bring Down-to-Earth benefits

EARLY EARTH
Satellogic signs 3 year deal with Albania to access dedicated satellite constellation

AE Industrial Partners makes significant investment in York Space Systems

John Deere announces Request for Proposals for satellite communications opportunity

ViaSat-3 achieves flight configuration

EARLY EARTH
Solstar provides assured communications for deorbiting LEO satellites as FCC issues new order

Studying yeast DNA in space may help protect astronauts from cosmic radiation

Kayhan Space Awarded SpaceWERX Orbital Prime Contract

Some everyday materials have memories, and now they can be erased

EARLY EARTH
A day at the beach for life on other worlds

Laughing gas in space could mean life

Synthetic lava in the lab aids exoplanet exploration

The fountain of life: Water droplets hold the secret ingredient for building life

EARLY EARTH
NASA's Juno gets highest-resolution close-up of Jupiter's moon Europa

Juno probe takes detailed photo of Jupiter's moon, Europa

Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.