. 24/7 Space News .
TIME AND SPACE
New Clues About How Ancient Galaxies Lit up the Universe
by Staff Writers
Pasadena CA (JPL) May 09, 2019

This deep-field view of the sky, taken by NASA's Spitzer Space Telescope, is dominated by galaxies - including some very faint, very distant ones - circled in red. The bottom right inset shows one of those distant galaxies, made visible thanks to a long-duration observation by Spitzer. The wide-field view also includes data from NASA's Hubble Space Telescope. The Spitzer observations came from the GREATS survey, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS is itself an acronym: Great Observatories Origins Deep Survey.

NASA's Spitzer Space Telescope has revealed that some of the universe's earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today.

In a new study, researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago). The data show that in a few specific wavelengths of infrared light, the galaxies are considerably brighter than scientists anticipated. The study is the first to confirm this phenomenon for a large sampling of galaxies from this period, showing that these were not special cases of excessive brightness, but that even average galaxies present at that time were much brighter in these wavelengths than galaxies we see today.

No one knows for sure when the first stars in our universe burst to life. But evidence suggests that between about 100 million and 200 million years after the big bang, the universe was filled mostly with neutral hydrogen gas that had perhaps just begun to coalesce into stars, which then began to form the first galaxies. By about 1 billion years after the big bang, the universe had become a sparkling firmament. Something else had changed, too: Electrons of the omnipresent neutral hydrogen gas had been stripped away in a process known as ionization. The Epoch of Reionization - the changeover from a universe full of neutral hydrogen to one filled with ionized hydrogen - is well documented.

Before this universe-wide transformation, long-wavelength forms of light, such as radio waves and visible light, traversed the universe more or less unencumbered. But shorter wavelengths of light - including ultraviolet light, X-rays and gamma rays - were stopped short by neutral hydrogen atoms. These collisions would strip the neutral hydrogen atoms of their electrons, ionizing them.

But what could have possibly produced enough ionizing radiation to affect all the hydrogen in the universe? Was it individual stars? Giant galaxies? If either were the culprit, those early cosmic colonizers would have been different than most modern stars and galaxies, which typically don't release high amounts of ionizing radiation. Then again, perhaps something else entirely caused the event, such as quasars - galaxies with incredibly bright centers powered by huge amounts of material orbiting supermassive black holes.

"It's one of the biggest open questions in observational cosmology," said Stephane De Barros, lead author of the study and a postdoctoral researcher at the University of Geneva in Switzerland. "We know it happened, but what caused it? These new findings could be a big clue."

Looking for Light
To peer back in time to the era just before the Epoch of Reionization ended, Spitzer stared at two regions of the sky for more than 200 hours each, allowing the space telescope to collect light that had traveled for more than 13 billion years to reach us.

As some of the longest science observations ever carried out by Spitzer, they were part of an observing campaign called GREATS, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS (itself an acronym: Great Observatories Origins Deep Survey) is another campaign that performed the first observations of some GREATS targets. The study, published in the Monthly Notices of the Royal Astronomical Society, also used archival data from NASA's Hubble Space Telescope.

Using these ultra-deep observations by Spitzer, the team of astronomers observed 135 distant galaxies and found that they were all particularly bright in two specific wavelengths of infrared light produced by ionizing radiation interacting with hydrogen and oxygen gases within the galaxies. This implies that these galaxies were dominated by young, massive stars composed mostly of hydrogen and helium. They contain very small amounts of "heavy" elements (like nitrogen, carbon and oxygen) compared to stars found in average modern galaxies.

These stars were not the first stars to form in the universe (those would have been composed of hydrogen and helium only) but were still members of a very early generation of stars. The Epoch of Reionization wasn't an instantaneous event, so while the new results are not enough to close the book on this cosmic event, they do provide new details about how the universe evolved at this time and how the transition played out.

"We did not expect that Spitzer, with a mirror no larger than a Hula-Hoop, would be capable of seeing galaxies so close to the dawn of time," said Michael Werner, Spitzer's project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "But nature is full of surprises, and the unexpected brightness of these early galaxies, together with Spitzer's superb performance, puts them within range of our small but powerful observatory."

NASA's James Webb Space Telescope, set to launch in 2021, will study the universe in many of the same wavelengths observed by Spitzer. But where Spitzer's primary mirror is only 85 centimeters (33.4 inches) in diameter, Webb's is 6.5 meters (21 feet) - about 7.5 times larger - enabling Webb to study these galaxies in far greater detail. In fact, Webb will try to detect light from the first stars and galaxies in the universe. The new study shows that due to their brightness in those infrared wavelengths, the galaxies observed by Spitzer will be easier for Webb to study than previously thought.

"These results by Spitzer are certainly another step in solving the mystery of cosmic reionization," said Pascal Oesch, an assistant professor at the University of Geneva and a co-author on the study. "We now know that the physical conditions in these early galaxies were very different than in typical galaxies today. It will be the job of the James Webb Space Telescope to work out the detailed reasons why."

Research paper


Related Links
Spitzer at NASA
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New Hubble measurements confirm universe is expanding faster than expected
Baltimore MD (SPX) Apr 26, 2019
New measurements from NASA's Hubble Space Telescope confirm that the Universe is expanding about 9% faster than expected based on its trajectory seen shortly after the big bang, astronomers say. The new measurements, published April 25 in the Astrophysical Journal Letters, reduce the chances that the disparity is an accident from 1 in 3,000 to only 1 in 100,000 and suggest that new physics may be needed to better understand the cosmos. "This mismatch has been growing and has now reached a po ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Gateway to the Solar System

RSC Energia developed a one-orbit rendezvous profile

Observing Gaia from Earth to improve its star maps

NASA Aids Testing of Boeing Deep Space Habitat Ground Prototype in Alabama

TIME AND SPACE
Air Force releases proposal request for the Phase 2 Launch Service Procurement Contract

SpaceX's Dragon Cargo capsule docks with Space Station

Rocket Crafters Chooses RUAG Space as Preferred Supplier

SpinLaunch Breaks Ground for New Test Facility at Spaceport America

TIME AND SPACE
For InSight, dust cleanings will yield new science

Lockheed Martin completes testing milestone for Mars 2020 heat shield

Martian Dust Could Help Explain Water Loss, Plus Other Learnings From Global Storm

ESA to Lose Member State Support if ExoMars Launch Postponed - Director-General

TIME AND SPACE
China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

China to enhance international space cooperation

TIME AND SPACE
New space race to bring satellite internet to the world

Maxar Technologies to receive full insurance payout for WorldView-4 loss

LeoSat's commercial traction accelerates to hit US$2B milestone

Euroconsult and RKF Engineering Solutions announce partnership agreement

TIME AND SPACE
Recognising sustainable behaviour in orbit

Physicists propose perfect material for lasers

US and Japanese scientists conduct joint composites study

Gold helps CT scans pick up the finest surface structures

TIME AND SPACE
Cosmic dust reveals new insights on the formation of solar system

Planetary Habitability? It's What's Inside That Counts

Rapid destruction of Earth-like atmospheres by young stars

Slime mold memorizes foreign substances by absorbing them

TIME AND SPACE
Brazilian scientists investigate dwarf planet's ring

Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.