. 24/7 Space News .
STELLAR CHEMISTRY
Neutron star collisions are a "goldmine" of heavy elements, study finds
by Jennifer Chu for MIT News
Boston MA (SPX) Oct 26, 2021

New research suggests binary neutron stars are a likely cosmic source for the gold, platinum, and other heavy metals we see today.

Most elements lighter than iron are forged in the cores of stars. A star's white-hot center fuels the fusion of protons, squeezing them together to build progressively heavier elements. But beyond iron, scientists have puzzled over what could give rise to gold, platinum, and the rest of the universe's heavy elements, whose formation requires more energy than a star can muster.

A new study by researchers at MIT and the University of New Hampshire finds that of two long-suspected sources of heavy metals, one is more of a goldmine than the other.

The study, published in Astrophysical Journal Letters, reports that in the last 2.5 billion years, more heavy metals were produced in binary neutron star mergers, or collisions between two neutron stars, than in mergers between a neutron star and a black hole.

The study is the first to compare the two merger types in terms of their heavy metal output, and suggests that binary neutron stars are a likely cosmic source for the gold, platinum, and other heavy metals we see today. The findings could also help scientists determine the rate at which heavy metals are produced across the universe.

"What we find exciting about our result is that to some level of confidence we can say binary neutron stars are probably more of a goldmine than neutron star-black hole mergers," says lead author Hsin-Yu Chen, a postdoc in MIT's Kavli Institute for Astrophysics and Space Research.

Chen's co-authors are Salvatore Vitale, assistant professor of physics at MIT, and Francois Foucart of UNH.

An efficient flash
As stars undergo nuclear fusion, they require energy to fuse protons to form heavier elements. Stars are efficient in churning out lighter elements, from hydrogen to iron. Fusing more than the 26 protons in iron, however, becomes energetically inefficient.

"If you want to go past iron and build heavier elements like gold and platinum, you need some other way to throw protons together," Vitale says.

Scientists have suspected supernovae might be an answer. When a massive star collapses in a supernova, the iron at its center could conceivably combine with lighter elements in the extreme fallout to generate heavier elements.

In 2017, however, a promising candidate was confirmed, in the form a binary neutron star merger, detected for the first time by LIGO and Virgo, the gravitational-wave observatories in the United States and in Italy, respectively. The detectors picked up gravitational waves, or ripples through space-time, that originated 130 million light years from Earth, from a collision between two neutron stars - collapsed cores of massive stars, that are packed with neutrons and are among the densest objects in the universe.

The cosmic merger emitted a flash of light, which contained signatures of heavy metals.

"The magnitude of gold produced in the merger was equivalent to several times the mass of the Earth," Chen says. "That entirely changed the picture. The math showed that binary neutron stars were a more efficient way to create heavy elements, compared to supernovae."

A binary goldmine
Chen and her colleagues wondered: How might neutron star mergers compare to collisions between a neutron star and a black hole? This is another merger type that has been detected by LIGO and Virgo and could potentially be a heavy metal factory. Under certain conditions, scientists suspect, a black hole could disrupt a neutron star such that it would spark and spew heavy metals before the black hole completely swallowed the star.

The team set out to determine the amount of gold and other heavy metals each type of merger could typically produce. For their analysis, they focused on LIGO and Virgo's detections to date of two binary neutron star mergers and two neutron star - black hole mergers.

The researchers first estimated the mass of each object in each merger, as well as the rotational speed of each black hole, reasoning that if a black hole is too massive or slow, it would swallow a neutron star before it had a chance to produce heavy elements. They also determined each neutron star's resistance to being disrupted. The more resistant a star, the less likely it is to churn out heavy elements. They also estimated how often one merger occurs compared to the other, based on observations by LIGO, Virgo, and other observatories.

Finally, the team used numerical simulations developed by Foucart, to calculate the average amount of gold and other heavy metals each merger would produce, given varying combinations of the objects' mass, rotation, degree of disruption, and rate of occurrence.

On average, the researchers found that binary neutron star mergers could generate two to 100 times more heavy metals than mergers between neutron stars and black holes. The four mergers on which they based their analysis are estimated to have occurred within the last 2.5 billion years. They conclude then, that during this period, at least, more heavy elements were produced by binary neutron star mergers than by collisions between neutron stars and black holes.

The scales could tip in favor of neutron star-black hole mergers if the black holes had high spins, and low masses. However, scientists have not yet observed these kinds of black holes in the two mergers detected to date.

Chen and her colleagues hope that, as LIGO and Virgo resume observations next year, more detections will improve the team's estimates for the rate at which each merger produces heavy elements. These rates, in turn, may help scientists determine the age of distant galaxies, based on the abundance of their various elements.

"You can use heavy metals the same way we use carbon to date dinosaur remains," Vitale says. "Because all these phenomena have different intrinsic rates and yields of heavy elements, that will affect how you attach a time stamp to a galaxy. So, this kind of study can improve those analyses."

Research Report: "The relative contribution to heavy metals production from binary neutron star mergers and neutron star-black hole mergers"


Related Links
Kavli Institute for Astrophysics and Space Research
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A radical shift to link soot formation and interstellar evolution
Thuwal, Saudi Arabia (SPX) Oct 25, 2021
Rethinking the formation and growth of polycyclic aromatic hydrocarbons (PAHs), key contributors to harmful soot particles formed during fuel combustion and the smallest dust grains in interstellar matter, is helping KAUST researchers to develop greener and more efficient combustion processes, while also shedding light on interstellar evolution. Several pathways are proposed to explain how these large organic molecules form. These typically involve a cascade of chemical reactions that assist in re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Printable steak, insect protein, fungus among NASA space food idea winners

Nanoracks, Voyager Space, and Lockheed Martin to develop commercial space module

Blue Origin, partners announce plans for private space station

Bezos' Blue Origin announces plans for private space station

STELLAR CHEMISTRY
Ten years of Soyuz at Europe's Spaceport

US targeting Feb. 2022 to launch new lunar program Artemis

NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

STELLAR CHEMISTRY
You can help train NASA's rovers to better explore Mars

Mars helicopter Ingenuity approaches 14th flight

China's Mars orbiter resumes communications with Earth

NASA Mars Rover and Helicopter models to go on national tour

STELLAR CHEMISTRY
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

STELLAR CHEMISTRY
From Polar Bears to Polar Orbits

Verizon to use Amazon satellites for broadband Internet in rural areas

Conclusions from Satellite Constellations 2 Released

Russian Soyuz rocket launches 36 new UK satellites

STELLAR CHEMISTRY
A world without access to space

China launches Shijian-21 satellite

Proba-1 marks 20 years of orbital operations

UK working with global partners to clear up dangerous space debris

STELLAR CHEMISTRY
Breakthrough Listen releases analysis of previously detected signal

Could this be a planet in another galaxy?

NEID Spectrometer Lights Up Path to Exoplanet Exploration

Astronomers provide 'Field Guide' to Exoplanets known as Hot Jupiters

STELLAR CHEMISTRY
Keeping our eyes on New Horizons

The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.