. | . |
Neutrino Factories in Deep Outer Space by Robert Emmerich for UW News Wurzburg, Germany (SPX) Jul 17, 2022
The Earth's atmosphere is continuously bombarded by cosmic rays. These consist of electrically charged particles of energies up to 1020 electron volts. That is a million times more than the energy achieved in the world's most powerful particle accelerator, the Large Hadron Collider near Geneva. The extremely energetic particles come from deep outer space, they have travelled billions of light years. Where do they originate, what shoots them through the Universe with such tremendous force? These questions are among the greatest challenges of astrophysics for over a century. Cosmic rays' birthplaces produce neutrinos. Neutrinos are neutral particles difficult to detect. They have almost no mass and hardly interact with matter. They race through the Universe and can travel through galaxies, planets and the human body almost without a trace. "Astrophysical neutrinos are produced exclusively in processes involving cosmic ray acceleration," explains astrophysics Professor Sara Buson from Julius-Maximilians-Universitat (JMU) Wurzburg in Bavaria, Germany. This is precisely what makes these neutrinos unique messengers paving the way to pinpoint cosmic ray sources.
Article in Science triggered controversial debate It was in 2017 that the researcher and collaborators first brought a blazar (TXS 0506+056) into the discussion as a putative neutrino source in the journal Science. Blazars are active galactic nuclei powered by supermassive black holes that emit much more radiation than their entire galaxy. The publication sparked a scientific debate about whether there truly is a connection between blazars and high-energy neutrinos.
Success with multi-messenger analyses The project is now showing its first success: In the journal Astrophysical Journal Letters, Sara Buson, along with her group, the former postdoc Raniere de Menezes and with Andrea Tramacere from the University of Geneva, reports that blazars can be confidently associated with astrophysical neutrinos at an unprecedented degree of certainty.
PeVatron blazars identified as extragalactic neutrino factories "We performed a cross-correlation analysis between the IceCube data and blazars, and found strong evidence that a sub-set of blazars originates the observed high-energy neutrinos. The probability of this being a coincidence is very low, as low as 6 + 10-7, i.e. less than one in a million. The results provide, for the first time, incontrovertible observational evidence that the sub-sample of newly-discovered PeVatron blazars are extragalactic neutrino sources and thus cosmic ray accelerators." According to Sara Buson, the discovery of these high-energy neutrino factories represents a major milestone for astrophysics: "It places us a step forward in solving the century-long mystery of the origin of the cosmic rays".
Only the tip of the iceberg This also applies to Buson's research: "What we are observing is only 'the tip of the iceberg', i.e., possibly the brightest most efficient neutrino emitters." In fact, she says, our statistical analysis has focused only on the most promising sets of the IceCube neutrino data. Buson expects that further sophisticated analytical techniques may bring more discoveries. The PeVatron blazars are a new challenge for multi-messenger astrophysics, she said: "What makes this set of blazars so special among the thousands of comparable objects in our Universe? This question, among others, will keep our multi-messenger community busy for decades to come."
Research Report:Beginning a journey across the Universe: the discovery of extragalactic neutrino factories
Probing high-energy neutrinos with an IceCube Pasadena CA (SPX) Jun 14, 2022 The subatomic particles called neutrinos, are believed to be ubiquitous throughout the Universe but are very difficult to detect. Now, Moroccan astrophysicist Salah Eddine Ennadifi and his co-workers, published a paper in EPJ Plus that describes the first known observation of intergalactic, high-energy neutrinos and probes new neutrino-related physics beyond the Standard Model of Particle Physics. Neutrinos are puzzling particles; they are similar in many ways to electrons, but have no charge and ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |