. | . |
Neural Networks Predict Planet Mass by Staff Writers Bern, Switzerland (SPX) Mar 14, 2019
To find out how planets form astrophysicists run complicated and time consuming computer calculations. Members of the NCCR PlanetS at the University of Bern have now developed a totally novel approach to speed up this process dramatically. They use deep learning based on artificial neural networks, a method that is well known in image recognition. Planets grow in stellar disks accreting solid material and gas. Whether they become bodies like Earth or Jupiter depends on different factors like the properties of the solids, the pressure and temperature in the disk and the already accumulated material. With computer models the astrophysicists try to simulate the growth process and determine the interior planetary structure. For given boundary conditions they calculate the masses of the gas envelope of a planet. "This requires solving a set of differential equations," explains Yann Alibert, science officer of the NCCR PlanetS at the University of Bern: "Solving these equations has been a specialty of the astrophysicists here in Bern for the past 15 years, but it is a complicated and time consuming process." To speed up the calculations Yann Alibert and PlanetS associate Julia Venturini of the International Space Science Institute (ISSI) in Bern adopted a method that has already captured many other fields including the smartphone in our hand: deep learning. It is for instance used for face and image recognition. But this branch of artificial intelligence and machine learning has also improved automatic language translation and will be crucial for self-driving cars. "There is a big hype also in astronomy," says Alibert. "Machine learning has already been used to analyze observations, but to my knowledge we are the first to use deep learning for such a purpose." Alibert and Venturini publish their results in the journal Astronomy and Astrophysics (A and A).
Database of Millions of Planets "Then, we trained this network using our gigantic database," explains the astrophysicist. "Now our network is able to predict the mass of a planet being formed under certain conditions with a very good accuracy and tremendously faster than solving the differential equations." The deep learning process is much more precise than previously developed methods to replace the solution of differential equations by some analytical formulas. These analytical formulas could predict that a planet should grow up to the mass of Jupiter, while in reality it could not have more mass than Neptune. "We show that our deep neural networks provide a very good approximation at the level of percents," summarizes Alibert. The researchers provide their results on the software development platform GitHub, so that colleagues working in planet formation all around the world benefit from them.
Research Report: "Using Deep Neural Networks to Compute the Mass of Forming Planets"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |