. 24/7 Space News .
STELLAR CHEMISTRY
Need for Larger Space Telescope inspires lightweight flexible holographic lens
by Mary L. Martialay for RPI News
Troy NY (SPX) Oct 27, 2021

New technique produces lens for focused image or spectrum.

Inspired by a concept for discovering exoplanets with a giant space telescope, a team of researchers is developing holographic lenses that render visible and infrared starlight into either a focused image or a spectrum. The experimental method, detailed in an article appearing in Nature Scientific Reports, could be used to create a lightweight flexible lens, many meters in diameter, that could be rolled for launch and unfurled in space.

"We use two spherical waves of light to produce the hologram, which gives us fine control over the diffractive grating recorded on the film, and the effect it has on light - either separating light with super sensitivity, or focusing light with high resolution," said Mei-Li Hsieh, a visiting researcher at Rensselaer Polytechnic Institute and an expert in optics and photonics who established a mathematical solution to govern the output of the hologram. "We believe this model could be useful in applications that require extremely high spectral resolution spectroscopy, such as analysis of exoplanets."

Hsieh, who also holds a faculty position at National Yang Ming Chiao Tung University in Taiwain, along with Rensselaer physicists Shawn-Yu Lin and Heidi Jo Newberg, worked with Thomas D. Ditto, an artist and inventor who conceived the idea of an optical space telescope freed of conventional, and heavy, glass mirrors and lenses. Ditto first worked at Rensselaer in the 1970s and is currently a visiting researcher in astrophysics.

Telescopes that must be launched into space (to benefit from a view unimpeded by Earth's atmosphere) are limited by the weight and bulk of glass mirrors used to focus light, which can realistically span only a few meters in diameter. By contrast, the lightweight flexible holographic lens - more properly called a "holographic optical element" - used to focus light could be dozens of meters across. Such an instrument could be used to directly observe an exoplanet, a leap over current methods that detect exoplanets based on their effect on light coming from the star they orbit, said Newberg, a Rensselaer professor of physics, applied physics, and astronomy.

"To find Earth 2.0, we really want to see exoplanets by direct imaging - we need to be able to look at the star and see the planet separate from the star. And for that, we need high resolution and a really big telescope," said Newberg, an astrophysicist and expert in galactic structure.

The holographic optical element is a refined version of a Fresnel lens, a category of lenses that use concentric rings of prisms arrayed in a flat plane to mimic the focusing ability of a curved lens without the bulk. The concept of the Fresnel lens - which was developed for use in lighthouses -dates to the 19th century, with modern-day Fresnel lenses of glass or plastic found in automobile lamps, micro-optics, and camera screens.

But while Fresnel holographic optical elements - created by exposing a light-sensitive plastic film to two sources of light at different distances from the film - are not uncommon, existing methods were limited to lenses that could only focus light, rather than separating it into its constituent colors.

The new method allows the designers to either focus light onto a single point or disperse it into its constituent colors, producing a spectrum of pure colors, said Lin, corresponding author and a Rensselaer professor of physics, applied physics, and astronomy. The method uses two sources of light, positioned very close to one another, which create concentric waves of light that - as they travel toward the film - either build or cancel each other out. This pattern of convergence or interference can be tuned based on the formulas Hsieh developed. It is printed, or "recorded," onto the film as a holographic image and, depending on how the image is structured, light passing through the holographic optical element is either focused or stretched.

"We wanted to stretch the light, so that we could separate it into different wavelengths. Any Fresnel lens will stretch the light a little, but not enough," said Lin, an expert in photonic crystals and nano-photonics. "With our method, we can have super resolution on one end, or super sensitive - with each color separated. When the light is stretched like that, the color is very good, as pure and as vivid as you can get."

Hsieh, Newberg, Lin, and Ditto were joined in the research by Yi-Wen Lee and Shiuan-Huei Lin of National Yang Ming Chiao Tung University. "Experimental realization of a Fresnel hologram as a super spectral resolution optical element" was produced with support from the NASA Innovative Advanced Concepts (NIAC) program and a grant from the Department of Education in Taiwan.

https://www.nature.com/articles/s41598-021-99955-
Related Links
Rensselaer Polytechnic Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Extending LIGO's reach into the cosmos
Pasadena CA (SPX) Oct 01, 2021
Since LIGO's groundbreaking detection, in 2015, of gravitational waves produced by a pair of colliding black holes, the observatory, together with its European partner facility Virgo, has detected dozens of similar cosmic rumblings that send ripples through space and time. In the future, as more and more upgrades are made to the National Science Foundation-funded LIGO observatories-one in Hanford, Washington, and the other in Livingston, Louisiana-the facilities are expected to detect increasingly ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Making space travel inclusive for all

Bezos' Blue Origin announces plans for private space station

Russia will fly four tourists into space in 2024

New far-out NASA 'travel' video: kayaking on Titan, skydiving on exoplanet

STELLAR CHEMISTRY
NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

NASA sending four astronauts to ISS on Sunday

Kuaizhou lifts off successfully, places satellite in orbit

STELLAR CHEMISTRY
You can help train NASA's rovers to better explore Mars

NASA Mars Rover and Helicopter models to go on national tour

Ingenuity Mars Helicopter Flight 14 Successful

China's Mars orbiter resumes communications with Earth

STELLAR CHEMISTRY
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

STELLAR CHEMISTRY
NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Verizon to use Amazon satellites for broadband Internet in rural areas

From Polar Bears to Polar Orbits

Conclusions from Satellite Constellations 2 Released

STELLAR CHEMISTRY
Bio-inspired autonomous materials

Getting NASA data to the ground with lasers

Emerging optics advances next-generation AR/VR displays

Carbon nanotubes could help electronics withstand outer space's harsh conditions

STELLAR CHEMISTRY
Breakthrough Listen releases analysis of previously detected signal

Could this be a planet in another galaxy?

Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

STELLAR CHEMISTRY
Science results offer first 3D view of Jupiter's atmosphere

Jupiter's Great Red Spot is deeper than thought, shaped like lens

Using Charon-light Researchers Capture Pluto's Dark Side

Juno peers deep into Jupiter's colorful belts and zones









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.