24/7 Space News
STELLAR CHEMISTRY
Navigating underground with cosmic-ray muons
stock illustration only
Navigating underground with cosmic-ray muons
by Staff Writers
Tokyo, Japan (SPX) Jun 16, 2023

Superfast, subatomic-sized particles called muons have been used to wirelessly navigate underground in a reportedly world first. By using muon-detecting ground stations synchronized with an underground muon-detecting receiver, researchers at the University of Tokyo were able to calculate the receiver's position in the basement of a six-story building. As GPS cannot penetrate rock or water, this new technology could be used in future search and rescue efforts, to monitor undersea volcanoes, and guide autonomous vehicles underground and underwater.

GPS, the global positioning system, is a well-established navigation tool and offers an extensive list of positive applications, from safer air travel to real-time location mapping. However, it has some limitations. GPS signals are weaker at higher latitudes and can be jammed or spoofed (where a counterfeit signal replaces an authentic one). Signals can also be reflected off surfaces like walls, interfered with by trees, and can't pass through buildings, rock or water.

By comparison, muons have been making Navigating underground with cosmic-ray muonss in recent years for their ability to help us look deep inside volcanoes, peek through pyramids and see inside cyclones. Muons fall constantly and frequently around the world (about 10,000 per square meter per minute) and can't be tampered with. "Cosmic-ray muons fall equally across the Earth and always travel at the same speed regardless of what matter they traverse, penetrating even kilometers of rock," explained Professor Hiroyuki Tanaka from Muographix at the University of Tokyo. "Now, by using muons, we have developed a new kind of GPS, which we have called the muometric positioning system (muPS), which works underground, indoors and underwater."

MuPS was initially created to help detect seafloor changes caused by underwater volcanoes or tectonic movement. It uses four muon-detecting reference stations aboveground to provide coordinates for a muon-detecting receiver underground. Early iterations of this technology required the receiver to be connected to a ground station by a wire, greatly restricting movement. However, this latest research uses high-precision quartz clocks to synchronize the ground stations with the receiver. The four parameters provided by the reference stations plus the synchronized clocks used to measure the muons' "time-of-flight" enables the receiver's coordinates to be determined. This new system is called the muometric wireless navigation system (MuWNS).

To test the navigation ability of MuWNS, reference detectors were placed on the sixth floor of a building while a "navigatee" took a receiver detector to the basement floor. They slowly walked up and down the corridors of the basement while holding the receiver. Rather than navigating in real time, measurements were taken and used to calculate their route and confirm the path they had taken.

"The current accuracy of MuWNS is between 2 meters and 25 meters, with a range of up to 100 meters, depending on the depth and speed of the person walking. This is as good as, if not better than, single-point GPS positioning aboveground in urban areas," said Tanaka. "But it is still far from a practical level. People need one-meter accuracy, and the key to this is the time synchronization."

Improving this system to enable real-time, meter-accurate navigation hinges on time and money. Ideally the team wants to use chip-scale atomic clocks (CSAC): "CSACs are already commercially available and are two orders of magnitude better than the quartz clocks we currently use. However, they are too expensive for us to use now. But, I foresee that they will become much cheaper as the global demand for CSAC for cellphones increases," said Tanaka.

MuWNS could someday be used to navigate robots working underwater or guide autonomous vehicles underground. Aside from the atomic clock, all the other electronic components of MuWNS can now be miniaturized, so the team hopes that eventually fitting it into hand-held devices, like your phone, will be feasible. In emergency situations like a building or mine collapse, this may be a future game changer for search and rescue teams.

Research Report:First navigation with wireless muometric navigation system (MuWNS) in indoor and underground environments.

Related Links
University of Tokyo
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
CALET captures charge-sign dependent cosmic ray modulation
Tokyo, Japan (SPX) Jun 09, 2023
The movement of cosmic ray particles across space, such as electrons and protons, is influenced by the Sun's magnetic field, causing fluctuations in the intensity of galactic cosmic rays (GCRs) reaching Earth in response to the solar cycle. During periods of low solar activity, such as the solar minimum, more GCRs have been observed to reach Earth compared to that for periods of high solar activity. This inverse correlation between the GCR-flux and solar activity is known as "solar modulation." Sp ... read more

STELLAR CHEMISTRY
Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

STELLAR CHEMISTRY
Final launch of Europe's Ariane 5 rocket postponed

VAST selects Impulse Space for Haven-1 Space Station Propulsion

Upgrades to KSC ground systems near completion for Artemis II

Handing over European Service Module for Artemis II

STELLAR CHEMISTRY
Rover on the home stretch to the Martian moon Phobos

Continuing along the alternate route: Sols 3861-3864

Persevering across the upper fan in search of record-keeping rocks

Touch and Go: Sol 3865

STELLAR CHEMISTRY
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

STELLAR CHEMISTRY
Seven US companies collaborate with NASA to advance space capabilities

Iridium proposes a new model for monitored BVLOS UAS integration

Satellite Internet fills holes in global connectivity, but cost remains an issue

Intelsat to extend life of four satellites by 2027

STELLAR CHEMISTRY
SpaceLogistics continues satellite life-extension work with latest sale

China conducts extravehicular radiation biological exposure experiment on space station

Augmented reality integration used for T-50 platform

Mitsubishi Electric demonstrates light source module for high-capacity laser links

STELLAR CHEMISTRY
Searching for an atmosphere on the rocky exoplanet TRAPPIST-1 c

Evidence of the amino acid tryptophan found in space

Gemini North detects multiple heavier elements in atmosphere of hot Exoplanet

Photosynthesis, key to life on Earth, starts with a single photon

STELLAR CHEMISTRY
Juno captures lightning bolts above Jupiter's north pole

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Colorful Kuiper Belt puzzle solved by UH researchers

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.