. 24/7 Space News .
ENERGY TECH
Nano-thin piezoelectrics advance self-powered electronics
by Staff Writers
Melbourne, Australia (SPX) Jan 20, 2021

The new material could be used to develop devices that convert blood pressure into a power source for pacemakers.

A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats.

The flexible and printable piezoelectric material, which can convert mechanical pressure into electrical energy, has been developed by an Australian research team led by RMIT University.

It is 100,000 times thinner than a human hair and 800% more efficient than other piezoelectrics based on similar non-toxic materials.

Importantly, researchers say it can be easily fabricated through a cost-effective and commercially scalable method, using liquid metals.

Lead researcher Dr Nasir Mahmood said the material, detailed in a new Materials Today study, was a major step towards realising the full potential of motion-driven, energy-harvesting devices.

"Until now, the best performing nano-thin piezoelectrics have been based on lead, a toxic material that is not suitable for biomedical use," Mahmood, a Vice-Chancellor's Research Fellow at RMIT, said.

"Our new material is based on non-toxic zinc oxide, which is also lightweight and compatible with silicon, making it easy to integrate into current electronics.

"It's so efficient that all you need is a single 1.1 nanometre layer of our material to produce all the energy required for a fully self-powering nanodevice."

The material's potential biomedical applications include internal biosensors and self-powering biotechnologies, such as devices that convert blood pressure into a power source for pacemakers.

The nano-thin piezoelectrics could also be used in the development of smart oscillation sensors to detect faults in infrastructure like buildings and bridges, especially in earthquake-prone regions.

Examples of energy-harvesting technologies that could be delivered by integrating the new material include smart running shoes for charging mobile phones and smart footpaths that harness energy from footsteps.

Flexible nanogenerator: how the material is made
The new material is produced using a liquid metal printing approach, pioneered at RMIT.

Zinc oxide is first heated until it becomes liquid. This liquid metal, once exposed to oxygen, forms a nano-thin layer on top - like the skin on heated milk when it cools.

The metal is then rolled over a surface, to print off nano-thin sheets of the zinc oxide "skin".

The innovative technique can rapidly produce large-scale sheets of the material and is compatible with any manufacturing process, including roll-to-roll (R2R) processing.

The researchers are now working on ultrasonic detectors for use in defence and infrastructure monitoring, as well as investigating the development of nanogenerators for harvesting mechanical energy.

"We're keen to explore commercial collaboration opportunities and work with relevant industries to bring future power-generating nanodevices to market," Mahmood said.

Research paper


Related Links
RMIT University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Transition metal 'cocktail' helps make brand new superconductors
Tokyo, Japan (SPX) Jan 11, 2021
Researchers from Tokyo Metropolitan University mixed and designed a new, high entropy alloy (HEA) superconductor, using extensive data on simple superconducting substances with a specific crystal structure. HEAs are known to preserve superconducting characteristics up to extremely high pressures. The new superconductor, Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2, has a superconducting transition at 8K, a relatively high temperature for an HEA. The team's approach may be applied to discovering new superconducting mate ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Prepping for a spacewalk to install Colka on ISS external hull

Cultivating plant growth in space

NASA Extends Exploration for Two Planetary Science Missions

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

ENERGY TECH
Virgin Orbit targets Sunday for LauncherOne mission from California

Cargo Dragon undocks from Station and heads for splashdown

Exotrail aims for more in orbit space mobility

China makes progress in developing rocket engines for space missions

ENERGY TECH
Curiosity Rover reaches its 3,000th day on Mars

Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

ENERGY TECH
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

ENERGY TECH
France to Invest $121.5Mln in Space Projects Over Next 2 Years, Macron Says

NASA, FAA Partnership Bolsters American Commercial Space Activities

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

ENERGY TECH
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

ENERGY TECH
Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

Astronomers find evidence for planets shrinking over billions of years

Astronomers measure enormous planet lurking far from its star

ENERGY TECH
Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.