![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Toyohashi, Japan (SPX) Apr 25, 2016
Conventional 3D displays, such as stereo displays with glasses and glass-free autostereoscopic displays, show two-dimensional images for each eye. Therefore, users experience incongruity and eyestrain owing to these pseudo-3D images. A holographic display produces an exact copy of the wave front of scattered light from an object, and hence, a realistic 3D display is expected. Holographic displays can reconstruct realistic 3D images, thereby eliminating the need for special glasses. However, construction of holographic displays is difficult, as nano-sized pixels are required for reconstructing 3D images with a wide viewing-angle. Conventional holographic displays have a viewing angle of <3 and a pixel pitch of 10-100 um. Researchers at Toyohashi Tech have recently developed wide-viewing 3D holographic displays composed of nano-magnetic pixels. These displays are driven by thermomagnetic recordings, and wide viewing-angles are achieved through the use of in-house-developed magneto-optic spatial light modulators (MOSLMs) composed of nano-sized pixels. According to Associate Prof. Takagi, "The advantages of this approach are that the focused spot of a laser defines the pixel size, the MOSLM does not require special current or voltage drivelines, and the switching speed is about 10 nsec/pixel that is enough for real-time display. "Therefore, the MOSLM can represent 3D movie because display media is a rewritable magnetic material. In addition, the magnetic hologram is stored for magnetic materials semi permanently. The viewing angle depends on pixel pitch size. In this study, we adjusted to the pixel pitch size of 1 um after obtaining the pixel size of 1 um." This confirms, as previously stated, that a 3D display with 1-um-pitch pixels can display holographic images at a viewing angles of over 30 . Therefore, this display constitutes an attractive option for visualizing 3D objects with a smooth motion parallax and without special glasses. Research paper: Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove and M. Inoue, "Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal", Appl. Phys. Lett., 108, 022404 (2016).
Related Links Toyohashi University of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |