Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NIST technique could make sub-wavelength images at radio frequencies
by Staff Writers
Washington DC (SPX) Jun 23, 2014


This is a laboratory apparatus for mapping and imaging of radio frequency (RF) electric fields at resolutions below the usual RF wavelength limit. Rubidium atoms are placed in the glass cylinder (on the right), which is illuminated at opposite ends by red and blue laser beams. The cylinder (2.5 by 7.5 centimeters in size) moves left on a track to enable the narrow laser beams to scan its entire width. The antenna (on the left) generates an RF field, which, depending on its frequency, has a certain effect on the spectrum of light absorbed by the atoms. By measuring this effect researchers can calculate and map the RF field strength as a function of position in the cylinder. Image courtesy Holloway and NIST.

Imaging and mapping of electric fields at radio frequencies (RF)(1) currently requires the use of metallic structures such as dipoles, probes and reference antennas. To make such measurements efficiently, the size of these structures needs to be on the order of the wavelength of the RF fields to be mapped. This poses practical limitations on the smallest features that can be measured.

New theoretical and experimental work by researchers at the National Institute of Standards and Technology (NIST) and the University of Michigan suggests an innovative method to overcome this limit by using laser light at optical wavelengths to measure and image RF fields.

The new technique uses a pair of highly stable lasers and rubidium atoms as tunable resonators to map and potentially image electric fields at resolutions far below their RF wavelengths (though not below the much shorter wavelengths of the lasers).

This advance could be useful in measuring and explaining the behavior of metamaterials and metasurfaces-structures engineered to have electromagnetic properties not found in nature, such as the illusion of invisibility. Imaging with sub-RF wavelength resolution also could help measure and optimize properties of densely packaged electronics and lead to new microscopy systems and imaging sensors.

Typically, RF field measurements are averaged over antenna dimensions of tens of millimeters (thousandths of a meter) or more. NIST's prototype technique has resolution limited by the beam widths of the two lasers used-in the range of 50 to 100 micrometers (millionths of a meter.) The technique was used to map RF fields with much longer wavelengths of 2863 and 17,605 micrometers (frequencies of 104.77 gigahertz and 17.04 gigahertz), respectively.(2)

The NIST and Michigan researchers mapped field strength as a function of position at resolutions as low as one-hundredth of an RF wavelength, far below normal antenna limits. Such data might be used to make colorized 2D images. In theory, the technique should work for wavelengths ranging from 600 to 300,000 micrometers.

The rubidium atoms are in a hollow glass cylinder (see photo), which is traversed down its length by two overlapping laser beams that act as stimulants and filters. First, a red laser excites the atoms, which initially absorb all the light. Then, a tunable blue laser excites the atoms to one of many possible higher energy ("Rydberg") states, which have novel properties such as extreme sensitivity and reactivity to electromagnetic fields.

Next an RF field-at the frequency to be mapped or imaged-is applied. This field alters the frequency at which the atoms vibrate, or resonate, altering the frequencies at which the atoms absorb the red light. This change in the absorption is easily measured and is directly related to the electric field strength at that part of the cylinder.

By moving the cylinder sideways on a track across the narrow laser beams, researchers can map the changing field strength across its diameter. The blue laser can be tuned to excite the atoms to different states to measure the strength of different RF frequencies.

In the demonstration, researchers measured the strength of standing waves at specific locations inside the glass cylinder. For the two frequencies studied, measurements of the field agreed with results from numerical simulations.

The imaging technique is a spinoff of an ongoing NIST effort to develop a method that will, for the first time, directly link electric field measurements to the International System of Units (SI).

NIST developed the new measurement and imaging technique. University of Michigan co-authors provided the tunable blue laser and assisted in the measurements. The project is funded in part by the Defense Advanced Research Projects Agency.

(1) The term RF is used here to span the conventional radio, microwave, millimeter wave and terahertz frequency bands.

(2) C.L. Holloway, J.A. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen and G. Raithel. Sub-wavelength imaging and field mapping via EIT and Autler-Townes splitting in Rydberg atoms. Applied Physics Letters. 104, 244102; Posted online June 16, 2014. doi:10.1063/1.4883635

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Selex ES is upgrading RAT 31 DL radar in Turkey
Rome (UPI) Jun 17, 2013
NATO support agency NSPA has tapped Selex ES to upgrade RAT 31 DL three-dimensional air defense radars that are in use in Turkey. The three radar systems by Selex have been deployed in the country under a contract signed in 1995. Selex said modernization will bring the systems up current NATO standards, improve the cost in operating them and improve procedural and maintenance tim ... read more


TECH SPACE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

TECH SPACE
Curiosity celebrates one-year Martian anniversary

Aluminum-Bearing Site on Mars Draws NASA Visitor

Mars Curiosity Rover Marks First Martian Year with Mission Successes

NASA's 'flying saucer' tests new Mars-landing technology

TECH SPACE
Orion Parachute Test Hits No Snags

Orion's parachutes help it land safely after 10-second free fall

NASA has a Problem with Unauthorized Access to it's Technologies

Elon Musk plans to take people to Mars within 10 years

TECH SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TECH SPACE
Space station astronauts wager friendly bet on USA vs. Germany match

Last European space truck set for July 24 launch

A Laser Message from Space

D-Day for the International Space Station

TECH SPACE
SpaceX to launch six satellites all at once

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

European satellite chief says industry faces challenges

TECH SPACE
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

TECH SPACE
Whale of a target: harpooning space debris

Strange physics turns off laser

Raytheon touts blimp-borne radar system

NIST technique could make sub-wavelength images at radio frequencies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.